2、若第n件物品能放入背包,则问题变为能否再从n-1件物品中选出若干件放入背包(这时背包可放入物品的重量变为s-w[n])。若第n件物品不能放入背包,则考虑从n-1件物品选若干件放入背包(这时背包可放入物品仍为s)。若最终s=0,则有一解;否则,若s<0或虽然s>0但物品数n<1,则无解。
(1)s-w[n],n-1 //Knap(s-w[n],n-1)=true(2)s,n-1 // Knap←Knap(s,n-1)
3、本题应使用深度优先遍历,从主调函数进入dfs(v)时 ,开始记数,若退出dfs()前,已访问完有向图的全部顶点(设为n个),则有向图有根,v为根结点。将n个顶点从1到n编号,各调用一次dfs()过程,就可以求出全部的根结点。题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。建立有向图g的邻接表存储结构参见上面第2题,这里只给出判断有向图是否有根的算法。 int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。
const n=用户定义的顶点数;
AdjList g ; //用邻接表作存储结构的有向图g。 void dfs(v)
{visited [v]=1; num++; //访问的顶点数+1
if (num==n) {printf(“%d是有向图的根。\\n”,v);num=0;}//if
p=g[v].firstarc; while (p)
{if (visied[p->adjvex]==0) dfs (p->adjvex);p=p->next;} //while
visited[v]=0; num--; //恢复顶点v}//dfs
void JudgeRoot()
//判断有向图是否有根,有根则输出之。{static int i ;
for (i=1;i<=n;i++ ) //从每个顶点出发,调用dfs()各一次。{num=0; visited[1..n]=0; dfs(i); } }// JudgeRoot
算法中打印根时,输出顶点在邻接表中的序号(下标),若要输出顶点信息,可使用g[i].vertex。
4、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。20分
void Hospital(AdjMatrix w,int n)
//在以邻接带权矩阵表示的n个村庄中,求医院建在何处,使离医院最远的村庄到医院的路径最短。
{for (k=1;k<=n;k++) //求任意两顶点间的最短路径 for (i=1;i<=n;i++) for (j=1;j<=n;j++)
if (w[i][k]+w[k][j] for (j=1;j<=n;j++) //求从某村庄i(1<=i<=n)到其它村庄的最长路径。 if (w[i][j]>s) s=w[i][j]; if (s<=m) {m=s; k=i;}//在最长路径中,取最短的一条。m记最长路径,k记出发顶点的下标。 Printf(“医院应建在%d村庄,到医院距离为%d\\n”,i,m); }//for}//算法结束 对以上实例模拟的过程略。各行中最大数依次是9,9,6,7,9,9。这几个最大数中最小者为6,故医院应建在第三个村庄中,离医院最远的村庄到医院的距离是6。 1、对图1所示的连通网G,请用Prim算法构造其最小生成树(每选取一条边画一个图)。 5、设指针变量p指向双向链表中结点A,指针变量q指向被插入结点B, 要求给出在结点A的后面插入结点B的操作序列(设双向链表中结点的两个指针域分别为llink和rlink)。 因篇幅问题不能全部显示,请点此查看更多更全内容