荣 欢,任师杰,汪梓坪,等.植物NAC转录因子的结构及功能研究进展[J].江苏农业科学,2020,48(18):44-53.doi:10.15889/j.issn.1002-1302.2020.18.008
植物NAC转录因子的结构及功能研究进展
荣 欢,任师杰,汪梓坪,王 飞,周 勇
(江西农业大学生物科学与工程学院,江西南昌330045)
摘要:NAC(NAM、ATAF1/2、CUC1/2)转录因子是植物特有的一类转录因子家族,在植物生长发育、生物及非生物胁迫反应中具有重要的调控作用。NAC蛋白的N端均存在1个高度保守的NAC结构域,而C端是变化的转录调控区。通过总结前人的研究进展,综述NAC转录因子在植物分生组织和器官边界的形成、根的发育、植物细胞次生壁的生长、植物衰老、激素调控和胁迫反应等过程中的重要调控作用,指出今后NAC转录因子的研究方向。 关键词:植物;NAC转录因子;生长发育;胁迫;NAC生理功能
中图分类号:S184 文献标志码:A 文章编号:1002-1302(2020)18-0044-10
植物在生长发育过程中极易受到逆境胁迫的影响。胁迫主要包括干旱、高盐、低温、高温等非生物胁迫和虫害、病原菌侵入等生物胁迫,这些胁迫通常会影响植物的正常生长发育。在长期的进化过程中,植物产生了一系列生理生化机制来适应、抵御或消除胁迫的影响。其中,基因表达调控是调节植物逆境胁迫最常见的一种方式。植物细胞感知逆境胁迫信号后,会通过某些信号途径将信号传递给胁迫应答的转录因子(transcriptionfactor,简称TF),转录因子可以通过其DNA结合结构域(DNAbindingdomain,简称DBD)和靶基因上游启动子区域的特异DNA序列模体(顺式作用元件)结合,从而调控靶基因在植物的不同组织、不同细胞或不同环境条件下的特异表达,从而激活植物抗逆反应,
1-3]降低胁迫对植物造成的伤害[。由于转录因子在
Petuniahybrida)的NAM(no族,命名取自于矮牵牛()基因、拟南芥(Arabidopsisthaliana)apicalmeristem的ATAF1/2基因,以及CUC2(cup-shapedcotyledon)基因的首字母。1996年,Souer等研究人员从矮牵牛中克隆出第1个NAC转录因子家族成员NAM,它影响矮牵牛顶端分生组织的形成与分
5]
。随后,NAC转录因子相继在拟南芥、水稻、葡化[
萄、小麦、大豆、木薯、番茄、黄瓜等物种中被发现),是植物中最大的转录因子家族之一。很多(表1
研究表明,NAC转录因子不仅参与了植物根、茎、叶、花的生长发育、果实成熟、激素调控,还参与了生物及非生物胁迫等生理生化反应过程的
6-7]
调控[。
1 NAC转录因子的结构
NAC转录因子最显著的结构特点是在蛋白质的N端存在1个高度保守的NAC结构域(约150~,而C端是变化的转录调控区160个氨基酸)
(transcriptionalactivationregion,简称TAR)(图1)。NAC结构域是NAC转录因子的结合域,可以分为5个亚结构域(A~E),其中亚结构域C和D高度保守且含有核定位信号,可能与DNA的结合有关,而亚结构域B和E则变化多样,可能会赋予NAC不
9]同的功能[。有研究表明,亚结构域E能参与调控
植物生长发育和应对胁迫等过程中具有重要的调控作用,因此对转录因子的研究一直是功能基因组研究的重要内容。近几十年来,世界各国科研人员通过基因组测序和功能分析,相继从不同植物中克
4]
隆到了大量的转录因子[,希望通过研究它们的功
能,来揭示植物的抗逆机制。
NAC转录因子是植物特有的一类转录因子家
收稿日期:2019-10-31
基金项目:江西省教育厅科技计划(编号:GJJ180172、GJJ160387)。1998—),男,江西萍乡人,主要从事生物科学与生作者简介:荣 欢(物技术研究。E-mail:962610432@qq.com。
通信作者:周 勇,博士,讲师,主要从事植物功能基因组学研究,E-mail:yzhoujxan@163.com;王 飞,博士,副教授,主要从事微生物资源与蛋白质工程研究,E-mail:wangfei179@163.com。
植物发育时期或组织特异性,并能够协同亚结构域
49]
D与DNA结合[。亚结构域A在不同的物种中也50]高度保守,可能与NAC蛋白形成二聚体有关[。
NAC蛋白的C端具有高度的多样性,但会频繁出现一些简单氨基酸的重复排列,例如Thr(苏氨酸)、
江苏农业科学 2020年第48卷第18期
表1 已发表的不同植物中NAC转录因子的数量物种拟南芥水稻白杨大豆苹果马铃薯雷蒙德氏棉陆地棉拉丁文
ArabidopsisthalianaOryzasativaPopulustrichocarpaGlycinemaxMalusdomesticaSolanumtuberosumGossypiumraimondiiG.hirsutum数量(个)参考文献117151163152180110149283[8-9][8-10][11][12][13][14][15-16][16]—45—
AC蛋白在C端会有一段跨膜区异。一些特殊的N
(transmembranemotifs,简称TMs),这种C端具有跨AC转录因子(NACwithtransmembrane膜特性的N
motif1,简称NTM1)一般被称为NTL(NTM1-like)蛋白,必须从膜上被释放并转运到核中才能行使调
51-52]
控功能[。有些NAC转录因子只有NAC结构
域,缺少转录调控区;更有的NAC结构域在C端,转录调控区在N端,中间含有一个保守的锌指结构。
通过X射线观察拟南芥ANAC019的NAC结构域的晶体结构,发现它是以数个螺旋元件包围一个海岛棉G.barbadense267[16]小米Setariaitalica147[17]葡萄Vitisvinifera74[18]木豆Cajanuscajan88[19]白菜Brassicarapa204[20]玉米Zeamays152[21]香蕉Musaacuminata167[22]鹰嘴豆Cicerarietinum71[23]木薯Manihotesculenta96[24]蒺藜苜蓿Medicagotruncatula97[25]番茄Solanumlycopersicum104[26]麻风树Jatrophacurcas100[27]二穗短柄草Brachypodiumdistachyon101[28]梅花
Prunusmume113[29]乌拉尔图小麦Triticumurartu87[30]普通小麦T.aestivum488[31]硬粒小麦T.turgidum168[32]茶树Camelliasinensis45[33]萝卜Raphanussativus172[34]甜瓜Cucumismelo82[35]川桑Morusnotabilis79[36]苦荞麦Fagopyrumtataricum80[37]烟草Nicotianatabacum154[38]大豆Glycinemax139[39]黄瓜Cucumissativus91[40-41]芝麻Sesamumindicum87[42]藜麦Chenopodiumquinoa90[43]辣椒Capsicumannuum104[44]野草莓Fragariavesca112[45]白梨Pyrusbretschneideri183[46]垂枝桦Betulapendula114[47]菠萝
Ananascomosus
73
[48]
Ser(丝氨酸)、Pro(脯氨酸)、Glu(谷氨酸)或者酸性氨基酸残基等,这是植物转录激活结构域的典型特征。这些简单氨基酸的重复排列在NAC同一亚家族是保守的,在不同的亚家族之间却有明显的差
螺旋状的结构,并和β-折叠组成一种未知的结构[50],而且NAC结构域可通过盐桥等作用形成一
侧带正电荷的蛋白二聚体[50,53],这可能是它们结合
DNA的基本形式。
2 NAC转录因子的生理功能
NAC转录因子因其在结构上有一定的共性和特性,其家族成员在功能上也有一定的共同点和多样性。但在植物不同部位、生长的不同时期,特定的NAC转录因子发挥的作用也不尽相同。总体来说,NAC转录因子对植物生长调控主要表现在如下几个方面。
2.1 参与植物分生组织和器官边界的形成
矮牵牛NAM基因主要在分生组织和器官原基边界的细胞内表达,nam突变体缺少茎顶端分生组织(
shootapicalmeristem,简称SAM),器官发育异常,导致幼苗大部分死亡,少部分存活下来的植株在成苗期花器官也会出现发育异常,说明NAM基因可能在分生组织器官原基的形成中起着一定的作
用[
5]
。拟南芥AtNAM在胚胎SAM的整个区域均大量表达,暗示着参与AtNAM也参与SAM的形成[54]
。
CUC蛋白与矮牵牛NAM蛋白属于同一亚家族,拟南芥cuc1cuc2双基因突变体中子叶、萼片和雄蕊融合,难以形成SAM,而单基因的突变体却没有明显的表型,说明它们参与植物顶端分生组织的形成,
且存在功能的冗余[55]。进一步研究发现,CUC1在
拟南芥胚的顶端分生组织和花器官原基的边界处表达,处于STM(SHOOTMERISTEMLESS)基因的上
—46—江苏农业科学 2020年第48卷第18期
游,可以激活很多SAM相关基因的表达,超量表达CUC1可以激活芽尖组织周缘细胞,诱导子叶不定
56-57]
。有趣的是,CUC1也可以通过一种芽的形成[
ST1(NAC缺乏次生壁,花药异常开裂,表明NSECONDARYWALLTHICKENINGPROMOTINGFACTOR1)和NST2参与花粉花药次生壁的形成,而
73]
且存在功能的冗余[。在拟南芥nst-1nst-3双敲
不依赖STM的途径促进SAM的形成,该途径受到
58]
AS1(ASYMMETRIC1)和AS2基因的负调控[。此
除转基因植株中,除维管导管以外,维管束间纤维与木质部次生壁的加厚被完全抑制,表明NST1和NST3也参与调控木质组织中次生壁的正常形
74]75]
成[,它们之间也存在部分功能的冗余[。苜蓿
外,CUC1可以正调控LIGHT-DEPENDENTSHORTHYPOCOTYLS4(LSH4)及其同源基因LSH3的表达,而在茎尖超量表达LSH4会抑制植物营养生长阶段叶片的生长,以及生殖生长阶段花中额外的芽或芽
59]
器官的形成[。CUC3基因主要在花器官原基边界
MtNST1是拟南芥NST1/2/3的同源基因,MtNST1的Tnt1逆转座子插入突变体出现花粉囊无法裂开,
表达,其表达量会被CUC1和CUC2所促进,超表达CUC3能促进胚后期的茎分生组织和器官边界的形
成[60-61]
。玉米ZmNAM1/2和ZmCUC3在胚芽鞘与
叶原基的边界处大量表达,参与茎尖分生组织的形
成[62]
。由此可见,植物NAM亚族基因在分生组织
和器官边界的形成中起着关键的作用。2.2 调控根的发育
拟南芥NAC1基因受生长素(auxin)的诱导,主要在根尖和侧根生长原基表达,超量表达NAC1能促进侧根发育,而反义表达NAC1能抑制TIR1(transportinhibitorresponsiveprotein1)诱导的侧根发育,而生长素应答因子AIR3(auxin-inducedinrootcultures3)和DBP(DNA-bindingprotein)基因表达也受到NAC1的诱导,说明NAC1可以介导生长
素信号以促进侧根的形成[63]。进一步研究表明,拟
南芥S
INAT5蛋白能促进E3泛素复合体与NAC1的连接,进而降低NAC1蛋白水平,减弱生长素信
号,从而限制侧根的发育和伸长[64]
。OsNAC2也可
以通过整合生长素和细胞分裂素(
cytokinin)信号途径来调控根的发育[65]。ANAC092/AtNAC2/ORE1基因也在根中特异表达,参与侧根的形成与发育[
66]
。进一步研究表明,ANAC092可以结合ARF8(AUXINRESPONSEFACTOR8)和PIN4(PIN-FORMED4)的启动子,通过控制生长素信号途径来负调控根的
发育[67]
。TaRNAC1是小麦根中特异表达的NAC
转录因子,在根中超量表达TaRNAC1的转基因小麦
根长、生物量和干旱抗性明显增加[
68]
。在拟南芥中超量表达一些来自于其他物种的NAC基因,也能促
进侧根的形成,如BnNAC14[69]、GmANC20[70]
、GmNAC109[71]、CiNAC3和CiNAC4[72]基因等。
2.3 调节植物细胞次生壁的生长
一些NAC转录因子会调节细胞次生壁的生长。在拟南芥中,nst1nst2双突变体均表现出花药内皮层
维管素纤维不再木质化[
76]
。拟南芥SND1(SECONDARYWALL-ASSOCIATEDNACDOMAINPROTEIN1)在茎秆维管束间纤维和木质纤维中特异表达,异位超量表达SND1基因,会使非厚壁的正常细胞大量沉积次级细胞壁而成为厚壁细胞,表明
SND1与纤维次级壁的厚度有关[77]
。敲除SND1基
因不能明显抑制次级纤维壁的加厚,而snd1nst1双突变体抑制的表型非常明显,细胞中纤维素、木聚糖、木质素等成分含量明显降低,说明SND1和
NST1共同参与调控纤维素次生壁的生长[78]
。拟南
芥V
ND6(vascular-relatedNACDomain6)和VND7分别在主根的后生木质部和原生木质部中表达,超量表达VND6、VND7均能导致根的后生木质部细胞或原生木质部细胞发育异常,而抑制VND6、VND7的表达则会抑制后生木质部或原生木质部的发育,同时VND7能恢复snd1nst1双突变体抑制次级纤维壁加厚的表型,说明它们在调控拟南芥根原生木质
部导管的分化中起着关键作用[79]。进一步研究表
明,SND1及其同源蛋白NST1、NST2、VND6和VND7通过调控下游基因MYB类蛋白因子(如MYB46、MYB58、MYB63等)的表达,最终激活次生壁的纤维素、木聚糖和木质素合成的相关基因(如LAC4等),促进不同类型细胞次生壁的生物合
成[80-83]
。此外,一些SND1的同源基因(如PtVNSs/
PtrWNDs等)能够恢复NST1和NST3双突变引起的维管束间纤维细胞次生壁的缺陷,它们的超量表达
会引起杨树叶片和拟南芥幼苗的次生壁增厚[
84-85]
。水稻OsSWNs和玉米ZmSWNs也能互补拟南芥snd1nst1双突变体在次生细胞壁加厚方面缺陷的表
型[86]
。这些结果表明,在植物界中与SND1同源的
NAC转录因子调控次生壁的生物合成机制可能是普遍存在的。
NAC转录因子对植物次生壁生长有着双向作
江苏农业科学 2020年第48卷第18期—47—
用,既可能促进其生长,又可能抑制其生长。拟南芥ANAC012在开花茎和根的形成层区特异表达,超NAC012会显著抑制木纤维中次生壁的形量表达A
87]
成,但轻微地增加了木质部导管的细胞壁厚度[。
BA的生物合成,或者介导ABA的信号转导,参与A导途径。如拟南芥ATAF1可以直接调节ABA合成
105]
CED3的表达,来调控ABA的生物合成[。基因N
拟南芥VNI2(VND-INTERACTING2)是一个NAC转录因子,其表达量受ABA诱导,可以结合RD(RESPONSIVETODEHYDRATION)和COR(COLD-REGULATED)基因的启动子,通过调控RD和COR
106]
基因的表达量来介导盐胁迫和叶片衰老途径[。
拟南芥XND1(xylemNACdomain1)在木质部中高度表达,超量表达XND1的转基因植株下胚轴原生木质部区域薄壁细胞的次生壁生长会受到明显的
88]
抑制,显示出极端矮化的表型[。
2.4 调控植物衰老
有研究表明,一些NAC转录因子能够间接或直在拟南芥中超量表达ANAC072/RD26能提高ABA诱导相关基因和胁迫诱导相关基因的表达量,对接地加速或延缓植物衰老过程。NAM-B1是野生二粒小麦的一个NAC转录因子,能正调控衰老,促
进营养成分从营养器官向籽粒转移[89]。AtNAP
(NAC-like,activatedbyAPETALA3/PISTILLATA)是一个典型的叶片衰老相关基因,超量表达AtNAP的转基因植株明显早衰,atnap突变体则表现出延缓叶
片衰老的表型[90]
。进一步研究发现,AtNAP可以被
脱落酸(
abscisicacid,简称ABA)所诱导,可以和SAG113(SENESCENCE-ASSOCIATEDGENE113)的启动子结合,形成一个ABA-AtNAP-SAG113蛋白调控链来控制叶片衰老时的气孔运动和失水速率,
进而调控叶片衰老进程[
91]
。水稻中AtNAP的同源基因OsNAP可以互补atnap的表型,在调控水稻衰
老发育过程中也发挥着重要作用[92-93]
。此外,在金
丝慈竹(
Bambusaemeiensis‘Viridiflavus’)中的同源基因B
eNAC1也能互补atnap的表型,在拟南芥中超量表达BeNAC1也会产生不同的早衰表型[94]。超
量表达甜瓜C
mNAC60基因的拟南芥转基因植株叶片衰老也明显加速[95]。另一个同源基因GhNAP也
能通过调节A
BA介导的叶片衰老途径来调控棉花的产量和纤维质量[
96]
。拟南芥ANAC092/AtNAC2/ORE1[97-98]、ANAC032[99]
等既能正调控依赖年龄的
叶片衰老,也在盐胁迫诱导的叶片衰老过程中起着重要的作用。一些NAC转录因子可以直接结合在叶绿素降解途径相关基因的启动子上,通过调节叶
绿素的代谢来调控叶片衰老进程,如OsNAP[92]
、ANAC016[100]、BrNAC055[101]、SlNAP2[102]等。大多数
调控叶片衰老的NAC转录因子都是以正调控的方式来调控叶片衰老,但也有少量的NAC转录因子是
以负调控的方式进行调控的,如ONAC106[103]
、DRL1[104]
等。
2.5 参与激素调控
很多NAC转录因子的表达量受到ABA的诱
ABA的敏感性增强,且增强了采后果实的抗逆性,而在ANAC072/RD26受到抑制的植株中这些基因的表达量同样受到抑制,对ABA不敏感,表明ANAC072/RD26在胁迫应答和ABA信号转导途径
中起着重要作用[107]
。水稻SNAC2(stress-responsive
NAC2)基因也受到ABA的诱导表达,它的超量表达植株表现出耐冷和抗盐的表型,并对ABA敏
感[
108]
。此外,OsNAP也可以通过介导ABA的信号转导途径来增强水稻的抗逆性,在OsNAP的超量表达转基因植株中,很多胁迫相关基因和胁迫相关转
录因子的表达量明显上升[
109]
。由此可见,介导ABA的信号转导途径的NAC转录因子多数与逆境信号传导途径有关。
NAC转录因子是茉莉酸(jasmonicacid,简称JA)信号的调控因子。超量表达ANAC072/RD26的转基因植株也增强了对茉莉酸甲酯(methyljasmonate,简称MeJA)的敏感性,因此ANAC072/RD26可能同时介导ABA和MeJA的信号转导途
径[
107]
。拟南芥ATAF1是ABA信号通路的一个负调控因子,但也能诱导J
A途径相关防御信号基因的表达[
110]
。OsNAP也可能通过MeJA信号传导途径正调控水稻叶片衰老途径[93]
。NAC转录因子RIM1
是水稻矮缩病毒繁殖的宿主因子,rim1突变体植株表现出根生长受抑制,编码JA生物合成相关基因的表达量明显上升,而且在JA处理下突变体植株和野生型植株一致,没有内源JA的积累,说明RIM1是
JA信号的负调控因子[111]
。
NAC也可以参与生长素、细胞分裂素、乙烯和赤霉素(gibberellins,简称GA)等的信号转导途
径[
65-66,112]
。拟南芥NAC1基因受生长素诱导并且介导生长素信号以促进侧根生长发育[63]
。拟南芥
AtNAC2受高盐诱导,这种诱导在乙烯超量突变体eto1-1中被增强,在乙烯不敏感突变体etr1-1、
—48—江苏农业科学 2020年第48卷第18期
135]136]
。拟南芥中ATAF1[和稻对稻瘟病菌的响应[
137]
ATAF2[分别对抗灰霉病和枯萎病有负调控作
ein2-1和生长素敏感突变体tir1-1中受到抑制,而在ABA敏感突变体abi2-1、abi3-1和abi4-1中没有显著变化,说明AtNAC2的盐胁迫响应参与了
66]
乙烯和生长素信号途径,与ABA信号途径无关[。
TAF1的同源基用。在大麦和拟南芥中超量表达A
因HvNAC6可以增强耐渗透细胞对白粉病菌的抗
138-139]
,而超量表达ATAF1在棉花中的同源基因性[
132]
GhATAF1却增强了对灰葡萄孢菌的敏感性[。
在拟南芥中,NTL8(NTM1-like8)的表达受高盐诱导和GA的抑制,NTL8可以经过不依赖ABA的GA
113]
途径介导拟南芥种子萌发过程中盐的调节[。
2.6 参与胁迫反应
植物在生长发育过程中极易受干旱、低温、高温、高盐等非生物胁迫和虫害、病原菌等生物胁迫3 展望
NAC家族转录因子是植物特有的一类转录因子,广泛参与植物生长发育及胁迫反应。到目前为的影响,植物细胞会产生对这些外界胁迫的感知,并通过多种复杂的信号传导途径将其传递给控制胁迫应答的转录因子,从而激活植物抗逆反应,降低逆境对植物造成的损害。NAC转录因子在这些过程中扮演着重要的角色。
很多NAC基因的表达量直接受到非生物逆境的调控,如大豆中有超过1/3(58/152)的NAC基因
是潜在的胁迫响应基因[12]。在非生物胁迫中,绝大
多数的报道集中在耐冷、耐旱和抗盐等方面。在水
稻中超量表达内源基因SNAC1[114]、OsNAC6[115]
、SNAC2[108]、ONAC045[116]、OsNAP[109]、ONAC106[103]
、ONAC022[117]、OsNAC2[118]
等,或外源基因
ATAF1[119]、EcNAC67[120]等,均能一定程度地表现
出耐冷、耐旱和抗盐的单一表型或者综合表型。在拟南芥中异源超表达不同物种来源的NAC成员也
有类似的结果[71,121-127]。绝大部分NAC是正调控
胁迫反应,但也有少部分NAC能负调控胁迫反应。如OsNAC95在水稻抗旱和耐冷胁迫反应中表现出相反的角色,它可以负调控抗旱胁迫,正调控耐冷
胁迫[128]。拟南芥ANAC069能通过降低活性氧
(reactiveoxygenspecies,简称ROS)的清除能力和脯氨酸含量,来负调控高盐和渗透胁迫
[129]
。苹果
MdNAC029/MdNAP以C-repeatbindingfactor
(CBF)依赖的方式负调控植物的抗冷能力[130]。玉
米Z
mNAC071也通过负调控ROS清除能力来负调控ABA反应和渗透胁迫
[131]
。NAC转录因子调控
非生物胁迫反应绝大多数是通过A
BA依赖的途径来进行的,也可以依赖其他激素的信号转导途径,
如JA[93,132-133]、GA/油菜素内酯(brassinolide,简称BR)[134]等。
一些报道表明,NAC转录因子也参与生物胁迫。如水稻OsNAC6对抵抗稻瘟病有正调控作
用[115]。OsNAC19可能在MeJA信号途径中参与水
止,NAC转录因子已经在几十种植物中被发现,但不同物种来源的NAC成员可能具有不同的生物学
功能,如调控淀粉合成[140-141]、种子活力[142]
、果实发育[143-144]、大豆抗毒素合成[145]、开花[146-147]
、锌的转运[148]等。因此,广泛研究NAC成员的功能不
仅能揭示NAC蛋白的调控网络,而且通过控制NAC基因或NAC蛋白的表达,提高作物的抗逆性,进而提升产量。
参考文献:
[1]SinghKB,FoleyRC,Onate-SanchezL.Transcriptionfactorsin
plantdefenseandstressresponses[J].CurrentOpinioninPlantBiology,2002,5(5):430-436.
[2]ChenWJ,TongZ.Networksoftranscriptionfactorswithrolesin
environmentalstressresponse[J].TrendsinPlantScience,2004,9(12):591-596.
[3]HuangGT,MaSL,BaiLP,etal.Signaltransductionduringcold,
salt,anddroughtstressesinplants[J].MolecularBiologyReports,2012,39(2):969-987.
[4]JinP,ZhangH,KongL,etal.PlantTFDB3.0:aportalforthe
functionalandevolutionarystudyofplanttranscriptionfactors[J].NucleicAcidsResearch,2014,42:1182-1187.
[5]SouerE,VanhouwelingenA,KloosD,etal.Thenoapicalmeristem
geneofpetuniaisrequiredforpatternformationinembryosandflowersandisexpressedatmeristemandprimordiaboundaries[J].Cell,1996,85(2):159-170.
[6]NakashimaK,TakasakiH,MizoiJ,etal.NACtranscriptionfactorsin
plantabioticstressresponses[J].BiochimicaetBiophysicaActa-GeneRegulatoryMechanisms,2012,1819(2):97-103.
[7]ShaoHB,WangHY,TangXL.NACtranscriptionfactorsinplant
multipleabioticstressresponses:progressandprospects[J].FrontiersinPlantScience,2015,6:902.
[8]NuruzzamanM,ManimekalaiR,SharoniAM,etal.Genome-wide
analysisofNACtranscriptionfactorfamilyinrice[J].Gene,2010,465(1/2):30-44.
[9]OokaH,SatohK,DoiK,etal.ComprehensiveanalysisofNAC
familygenesinOryzasativaandArabidopsisthaliana[J].DNA
江苏农业科学 2020年第48卷第18期
Research:anInternationalJournalforRapidPublicationofReportson,2003,10(6):239-247.GenesandGenomes
[10]FangYJ,JunY,XieKB,etal.Systematicsequenceanalysisand
identificationoftissue-specificorstress-responsivegenesofNACtranscriptionfactorfamilyinrice[J].MolecularGeneticsand,2008,280(6):547-563.Genomics
[11]HuRB,GuangQ,KongYZ,etal.ComprehensiveanalysisofNAC
domaintranscriptionfactorgenefamilyinpopulustrichocarpa[J].,2010,10(1):145.BMCPlantBiology
[12]DungTL,NishiyamaR,WatanabeY,etal.Genome-widesurvey
andexpressionanalysisofthePlant-SpecificNACtranscription,2014,85(1/2):63-80.MolecularBiology
—49—
[23]HaCV,EsfahaniMN,WatanabeY,etal.Genome-wide
identificationandexpressionanalysisoftheCaNACfamilymembersinchickpeaduringdevelopment,dehydrationandABAtreatments[J].PLoSOne,2014,9(12):e114107.
[24]WeiH,WeiYX,XiaZQ,etal.Genome-wideidentificationand
expressionanalysisoftheNACtranscriptionfactorfamilyincassava[J].PLoSOne,2015,10(8):e0136993.
[25]LeiL,SongL,WangYJ,etal.Genome-wideanalysisand
expressionpatternsoftheNACtranscriptionfactorfamilyinMedicagotruncatula[J].PhysiologyandMolecularBiologyoffactorfamilyinsoybeanduringdevelopmentanddehydrationstress[J].DNAResearch,2011,18(4):263-276.
13]SuHY,ZhangSZ,YuanXW,etal.Genome-wideanalysisand
identificationofstress-responsivegenesoftheNAM-ATAF1,2-CUC2transcriptionfactorfamilyinapple[J].PlantPhysiologyandBiochemistry,2013,71:11-21.
14]SinghAK,SharmaV,PalAK,etal.Genome-wideorganization
andexpressionprofilingoftheNACtranscriptionfactorfamilyinpotato(SolanumtuberosumL.)[J].DNAResearch,2013,20(4):403-423.
15]ShangHH,LiW,ZouCS,etal.AnalysesoftheNACtranscription
factorgenefamilyinGossypiumraimondiiUlbr:chromosomallocation,structure,phylogeny,andexpressionpatterns[J].JIntegrPlantBiol
,2013,55(7):663-676.16]HengS,HuML,LiJY,etal.ComprehensiveanalysisofNAC
transcriptionfactorsuncoverstheirrolesduringfiberdevelopmentandstressresponseincotton[J].BMCPlantBiology,2018,18(1):150.
17]PuranikS,SahuPP,MandalSN,etal.Comprehensivegenome-
widesurvey,genomicconstitutionandexpressionprofilingoftheNACtranscriptionfactorfamilyinfoxtailmillet(SetariaitalicaL.)[
J].PLoSOne,2013,8(5):e64594.18]NianW,YuZ,XinHP,etal.ComprehensiveanalysisofNAC
domaintranscriptionfactorgenefamilyinVitisvinifera[J].PlantCellReports,2013,32(1):61-75.
19]ViswanathanS,JagannadhamPK,ParameswaranC,etal.NAC
transcriptionfactorgenes:genome-wideidentification,phylogenetic,motifandcis-regulatoryelementanalysisinpigeonpea[Cajanuscajan(L.)Millsp.][J].MolecularBiologyReports,2014,41(12):7763-7773.
20]LiuTK,SongXM,DuanWK,etal.Genome-wideanalysisand
expressionpatternsofNACtranscriptionfactorfamilyunderdifferentdevelopmentalstagesandabioticstressesinChinesecabbage[J].PlantMolecularBiologyReporter,2014,32(5):1041-1056.21]ShirigaK,SharmaR,KumarK,etal.Genome-wideidentification
andexpressionpatternofdrought-responsivemembersoftheNACfamilyinmaize[J].MetaGene,2014,2:407-417.
22]CenciA,GuignonV,RouxN,etal.GenomicanalysisofNAC
transcriptionfactorsinbanana(Musaacuminata)anddefinitionofNACorthologousgroupsformonocotsanddicots[J].Plant
Plants,2017,23(2):343-356.
[26]SuHY,ZhangSZ,YinYL,etal.Genome-wideanalysisof
NAM-ATAF1,2-CUC2transcriptionfactorfamilyinSolanumlycopersicum[J].JournalofPlantBiochemistryandBiotechnology,2015,24(2):176-183.
[27]WuZY,XuXQ,XiongWD,etal.Genome-wideanalysisofthe
NACgenefamilyinphysicnut(JatrophacurcasL.)[J].PLoSOne
,2015,10(6):e0131890.[28]JunY,ZhangLH,BoS,etal.Systematicanalysisandidentification
ofstress-responsivegenesoftheNACgenefamilyinBrachypodiumdistachyon[J].PLoSOne,2015,10(3):e0122027.
[29]ZhuoXK,ZhengTC,ZhangZY,etal.Genome-wideanalysisof
theNACtranscriptionfactorgenefamilyrevealsdifferentialexpressionpatternsandcold-stressresponsesinthewoodyplantPrunusmume[J].Genes,2018,9(10):494.
[30]MaJH,TongDD,ZhangWL,etal.Identificationandanalysisof
theNACtranscriptionfactorfamilyinTriticumurartu[J].YiChuan,2016,38(3):243-253.
[31]GuérinC,RocheJ,AllardV,etal.Genome-wideanalysis,
expansionandexpressionoftheNACfamilyunderdroughtandheatstressesinbreadwheat(T.aestivumL.)[J].PLoSOne,2019,14(3):e0213390.
[32]SaidiMN,MergbyD,BriniF.Identificationandexpression
analysisoftheNACtranscriptionfactorfamilyindurumwheat(TriticumturgidumL.ssp.durum)[J].PlantPhysiology&Biochemistry,2017,112:117-128.
[33]WangYX,LiuZW,WuZJ,etal.Transcriptome-wide
identificationandexpressionanalysisoftheNACgenefamilyinteaplant[Camelliasinensis(L.)O.Kuntze][J].PLoSOne,2016,11(11):e0166727.
[34]KaranjaBK,XuL,WangY,etal.Genome-widecharacterization
andexpressionprofilingofNACtranscriptionfactorgenesunderabioticstressesinradish(RaphanussativusL.)[J].PeerJ,2017,5:e4172.
[35]WeiSW,GaoLW,ZhangYD,etal.Genome-wideinvestigation
oftheNACtranscriptionfactorfamilyinmelon(CucumismeloL.)andtheirexpressionanalysisundersaltstress[J].PlantCellReports,2016,35(9):1827-1839.
[36]BaranwalVK,KhuranaP.Genome-wideanalysis,expression
dynamicsandvarietalcomparisonofNACgenefamilyatvarious
[[[[[[[[[[—50—
,2016,291(3):1305-1317.Genomics
江苏农业科学 2020年第48卷第18期
[J].EMBOReports,2004,5(3):297-303.factors
[51]KimYS,KimSY,ParkJE,etal.AMembrane-boundNAC
rabidopsis[J].ThetranscriptionfactorregulatescelldivisioninAPlantCell,2006,18(11):3132-3144.
[52]Ya-NiC,SlabaughE,BrandizziF.Membrane-tethered
rabidopsisthaliana:novelregulatorsintranscriptionfactorsinAstressresponseanddevelopment[J].CurrentOpinioninPlantBiology,2008,11(6):695-701.
[53]ChenQF,WangQ,XiongLZ,etal.Astructuralviewofthe
conserveddomainofricestress-responsiveNAC1[J].Protein&,2011,2(1):55-63.Cell
[54]DuvalM,HsiehTF,KimSY,etal.Molecularcharacterizationof
developmentalstagesinMorusnotabilis[J].MolecularGeneticsand[37]LiuMY,MaZT,SunWJ,etal.Genome-wideanalysisofthe
NACtranscriptionfactorfamilyinTartarybuckwheat(Fagopyrumtataricum)[J].BMCGenomics,2019,20(1):113.
[38]WeiL,LiXX,ChaoJT,etal.NACfamilytranscriptionfactorsin
tobaccoandtheirpotentialroleinregulatingleafsenescence[J].FrontiersinPlantScience,2018,9:1900.
[39]HussainRM,MohammedA,XingF,etal.TheessenceofNAC
genefamilytothecultivationofdrought-resistantsoybean(GlycineL.Merr.)cultivars[J].BMCPlantBiology,2017,17(1):55.max[40]ZhangXM,YuHJ,SunC,etal.Genome-widecharacterization
andexpressionprofilingoftheNACgenesunderabioticstressesinCucumissativus[J].PlantPhysiologyandBiochemistry,2017,113:98-109.
41]LiuXW,WangT,BartholomewES,etal.Comprehensiveanalysis
ofNACtranscriptionfactorsandtheirexpressionduringfruitspinedevelopmentincucumber(CucumissativusL.)[J].HorticRes,2018,5(1):31.
42]ZhangYJ,LiDH,WangY,etal.Genome-wideidentification
andcomprehensiveanalysisoftheNACtranscriptionfactorfamilyinSesamumindicum[J].PLoSOne,2018,13(6):e0199262.43]FengL,GuoXH,LiuJX,etal.Genome-wideidentification,
characterization,andexpressionanalysisoftheNACtranscriptionfactorinChenopodiumquinoa[J].Genes,2019,10(7):500.44]DiaoWP,SnyderJ,WangSB,etal.Genome-wideanalysesof
theNACtranscriptionfactorgenefamilyinpepper(CapsicumannuumL.):chromosomelocation,phylogeny,structure,expressionpatterns,cis-elementsinthepromoter,andinteractionnetwork[J].InternationalJournalofMolecularSciences,2018,19(4):1028.
45]MoyanoE,Martínez-RivasFJ,Blanco-PortalesR,etal.Genome-
wideanalysisoftheNACtranscriptionfactorfamilyandtheirexpressionduringthedevelopmentandripeningoftheFragaria×ananassafruits[J].PLoSOne,2018,13(5):e0196953.
46]GongX,ZhaoLY,SongXF,etal.Genome-wideanalysesand
expressionpatternsunderabioticstressofNACtranscriptionfactorsinwhitepear(Pyrusbretschneideri)[J].BMCPlantBiology,2019,19(1):161.
47]SongC,XinL,ZhangDW,etal.Genome-wideanalysisofNAC
genefamilyinBetulapendula[J].Forests,2019,10(9):741.48]HeQ,LiuYH,ZhangM,etal.Genome-wideidentificationand
expressionanalysisoftheNACtranscriptionfactorfamilyinpineapple[J].TropicalPlantBiology,2019,12(4):255-267.49]OlsenAN,ErnstHA,LeggioLL,etal.Preliminary
crystallographicanalysisoftheNACdomainofANAC,amemberoftheplant-specificNACtranscriptionfactorfamily[J].ActaCrystallographicaSectionD-BiologicalCrystallography,2004,60(1):112-115.
50]ErnstHA,OlsenAN,LarsenS,etal.Structureoftheconserved
domainofANAC,amemberoftheNACfamilyoftranscription
AtNAM:amemberoftheArabidopsisNACdomainsuperfamily[J].PlantMolecularBiology,2002,50(2):237-248.
[55]AidaM,IshidaT,FukakiH,etal.Genesinvolvedinorgan
separationinArabidopsis:ananalysisofthecup-shapedcotyledonmutant[J].ThePlantCell,1997,9(6):841-857.
[56]Ken-IchiroH,TakadaS,TasakaM.CUC1geneactivatesthe
expressionofSAM-relatedgenestoinduceadventitiousshootformation[J].ThePlantJournal,2003,36(5):687-696.[57]TakadaS,HibaraK,IshidaT,etal.TheCUP-SHAPED
COTYLEDON1geneofArabidopsisregulatesshootapicalmeristemformation[J].Development(Cambridge,England),2001,128(7):1127-1135.
[58]OriN,EshedY,ChuckG,etal.Mechanismsthatcontrolknoxgene
expressionintheArabidopsisshoot[J].Development(Cambridge,England),2000,127(24):5523-5532.
[59]TakedaS,HananoK,KariyaA,etal.CUP-SHAPED
COTYLEDON1transcriptionfactoractivatestheexpressionofLSH4andLSH3,twomembersoftheALOGgenefamily,inshootorganboundarycells[J].PlantJournal,2011,66(6):1066-1077.[60]Ken-IchiroH,KarimMR,TakadaS,etal.ArabidopsisCUP-
SHAPEDCOTYLEDON3regulatespostembryonicshootmeristemandorganboundaryformation[J].ThePlantCell,2006,18(11):2946-2957.
[61]VroemenCW,MordhorstAP,AlbrechtC,etal.TheCUP-
SHAPEDCOTYLEDON3geneisrequiredforboundaryandshootmeristemformationinArabidopsis[J].PlantCell,2003,15(7):1563-1577.
[62]ZimmermannR,WerrW.Patternformationinthemonocotembryo
asrevealedbyNAMandCUC3orthologuesfromZeamaysL.[J].PlantMolecularBiology,2005,58(5):669-685.
[63]XieQ,FrugisG,ColganDF,etal.ArabidopsisNAC1transduces
auxinsignaldownstreamofTIR1topromotelateralrootdevelopment[J].Genes&Development,2000,14(23):3024-3036.[64]QiX,Hui-ShanG,DallmanG,etal.SINAT5promotes
ubiquitin-relateddegradationofNAC1toattenuateauxinsignals[J].Nature,2002,419(693):167-170.
[65]MaoC,HeJ,LiuL,etal.OsNAC2integratesauxinandcytokinin
pathwaystomodulatericerootdevelopment[J].PlantBiotechnologyJournal,2019,18(2):429-442.
[[[[[[[[[[江苏农业科学 2020年第48卷第18期
[66]HeXJ,MuRL,CaoWH,etal.AtNAC2,atranscriptionfactor
,isinvolvedindownstreamofethyleneandauxinsignalingpathways[J].ThePlantsaltstressresponseandlateralrootdevelopmentJournal,2005,44(6):903-916.
[67]XiD,XuC,WangYX,etal.ArabidopsisANAC092regulates
auxin-mediatedrootdevelopmentbybindingtotheARF8andPIN4promoters[J].JournalofIntegrativePlantBiology,2019,61(9):1015-1031.
[68]ChenD,ChaiSC,McintyreCL,etal.Overexpressionofa
predominantlyroot-expressedNACtranscriptionfactorinwheat,biomassanddroughttolerance[J].PlantrootsenhancesrootlengthCellReports,2018,37(2):225-237.
,2011,66(4):579-590.Journal
—51—
[J].ThePlantbroadrangeofgenesforxylemvesselformation[80]ZhongRQ,RichardsonEA,YeZH.TheMYB46transcription
factorisadirecttargetofSND1andregulatessecondarywallbiosynthesisinArabidopsis[J].ThePlantCell,2007,19(9):2776-2792.
[81]MccarthyRL,ZhongR,YeZH.MYB83isadirecttargetofSND1
andActsredundantlywithMYB46intheregulationofsecondaryrabidopsis[J].PlantandCellPhysiology,cellwallbiosynthesisinA2009,50(11):1950-1964.
[82]ZhouJL,LeeC,ZhongRQ,etal.MYB58andMYB63are
transcriptionalactivatorsoftheligninbiosyntheticpathwayduring69]HegedusD,YuM,BaldwinD,etal.Molecularcharacterizationof
BrassicanapusNACdomaintranscriptionalactivatorsinducedinresponsetobioticandabioticstress[J].PlantMolecularBiology,2003,53(3):383-397.
70]HaoYJ,WeiW,SongQX,etal.SoybeanNACtranscription
factorspromoteabioticstresstoleranceandlateralrootformationintransgenicplants[J].ThePlantJournal,2011,68(2):302-313.71]YangXF,KimMY,HaJM,etal.Overexpressionofthesoybean
NACgeneGmNAC109increaseslateralrootformationandabioticstresstoleranceintransgenicArabidopsisplants[J].FrontiersinPlantScience
,2019,10:1036.72]HanXM,FengZQ,XingD,etal.TwoNACtranscriptionfactors
fromCaraganaintermediaalteredsalttoleranceofthetransgenicArabidopsis[J].BMCPlantBiology,2015,15(1):208.
73]MitsudaN,SekiM,ShinozakiK,etal.TheNACtranscription
factorsNST1andNST2ofArabidopsisregulatesecondarywallthickeningsandarerequiredforantherdehiscence[J].ThePlantCell,2005,17(11):2993-3006.
74]MitsudaN,IwaseA,HiroyukiY,etal.NACtranscriptionfactors,
NST1andNST3,arekeyregulatorsoftheformationofsecondarywallsinwoodytissuesofArabidopsis[J].ThePlantCell,2007,19(1):270-280.
75]MitsudaN,Ohme-TakagiM.NACtranscriptionfactorsNST1and
NST3regulatepodshatteringinapartiallyredundantmannerbypromotingsecondarywallformationaftertheestablishmentoftissueidentity[J].ThePlantJournal,2008,56(5):768-778.76]ZhaoX,Gallego-GiraldoL,WangHZ,etal.AnNAC
transcriptionfactororchestratesmultiplefeaturesofcellwalldevelopmentinMedicagotruncatula[J].ThePlantJournal,2010,63(1):100-114.
77]ZhongRQ,DemuraT,YeZH.SND1,aNACdomaintranscription
factor,isakeyregulatorofsecondarywallsynthesisinfibersofArabidopsis[J].ThePlantCell,2006,18(11):3158-3170.78]ZhongRQ,RichardsonEA,YeZH.TwoNACdomain
transcriptionfactors,SND1andNST1,functionredundantlyinregulationofsecondarywallsynthesisinfibersofArabidopsis[J].Planta,2007,225(6):1603-1611.
79]YamaguchiM,MitsudaN,OhtaniM,etal.VASCULAR-
RELATEDNAC-DOMAIN7directlyregulatestheexpressionofa
secondarycellwallformationinArabidopsis[J].ThePlantCell,2009,21(1):248-266.
[83]ZhongRQ,LeeC,ZhouJL,etal.Abatteryoftranscriptionfactors
involvedintheregulationofsecondarycellwallbiosynthesisinArabidopsis[J].ThePlantCell,2008,20(10):2763-2782.[84]ZhongR,LeeC,YeZH.Functionalcharacterizationofpoplar
wood-associatedNACdomaintranscriptionfactors[J].PlantPhysiology,2010,152(2):1044-1055.
[85]OhtaniM,NishikuboN,BoX,etal.ANACdomainproteinfamily
contributingtotheregulationofwoodformationinpoplar[J].ThePlantJournal
,2011,67(3):499-512.[86]ZhongR,LeeC,MccarthyRL,etal.Transcriptionalactivationof
secondarywallbiosynthesisbyriceandmaizeNACandMYBtranscriptionfactors[J].PlantandCellPhysiology,2011,52(10):1856-1871.
[87]Jae-HeungK,SeungHY,AndrewHP,etal.ANAC012,a
memberoftheplant-specificNACtranscriptionfactorfamily,negativelyregulatesxylaryfiberdevelopmentinArabidopsisthaliana[J].ThePlantJournal,2007,50(6):1035-1048.
[88]ZhaoCS,AvciU,EmilyHG,etal.XND1,amemberoftheNAC
domainfamilyinArabidopsisthaliana,negativelyregulateslignocellulosesynthesisandprogrammedcelldeathinxylem[J].ThePlantJournal
,2007,53(3):425-436.[89]UauyC,DistelfeldA,FahimaT,etal.ANACgeneregulating
senescenceimprovesgrainprotein,Zinc,andIroncontentinwheat[J].Science,2006,314(583):1298-1301.
[90]GuoYF,GanSS.AtNAP,aNACfamilytranscriptionfactor,has
animportantroleinleafsenescence[J].ThePlantJournal:forCellandMolecularBiology,2006,46(4):601-612.
[91]ZhangKW,GanSS.Anabscisicacid-AtNAPtranscriptionfactor-
SAG113proteinphosphatase2CregulatorychainforcontrollingdehydrationinsenescingArabidopsisleaves[J].PlantPhysiology,2012,158(2):961-969.
[92]LiangCZ,WangYQ,ZhuYN,etal.OsNAPconnectsabscisic
acidandleafsenescencebyfine-tuningabscisicacidbiosynthesisanddirectlytargetingsenescence-associatedgenesinrice[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica
,2014,111(27):10013-10018.[93]YongZ,HuangWF,LiL,etal.Identificationandfunctional
[[[[[[[[[[[—52—江苏农业科学 2020年第48卷第18期
[J].PlantJournal,2004,39(6):863-stress-signalingpathway876.
[108]HuH,YouJ,FangY,etal.Characterizationoftranscriptionfactor
geneSNAC2conferringcoldandsalttoleranceinrice[J].PlantMolecularBiology,2008,67(1/2):169-181.
[109]ChenX,WangYF,LvB,etal.TheNACfamilytranscription
factorOsNAPconfersabioticstressresponsethroughtheABApathway[J].PlantandCellPhysiology,2014,55(3):604-619.[110]LuPL,ChenNZ,AnR,etal.Anoveldrought-induciblegene,
ATAF1,encodesaNACfamilyproteinthatnegativelyregulatestherabidopsis[J].Plantexpressionofstress-responsivegenesinAcharacterizationofariceNACgeneinvolvedintheregulationofleaf[J].BMCPlantBiology,2013,13(1):132.senescence
[94]ChenYX,KaiQ,KuaiBK,etal.IdentificationofanNAP-like
transcriptionfactorBeNAC1regulatingleafsenescenceinbamboo(Bambusaemeiensis‘Viridiflavus’)[J].PhysiologiaPlantarum,2011,142(4):361-371.
[95]CaoSX,ZhangZB,WangCH,etal.Identificationofanovel
melontranscriptionfactorCmNAC60asapotentialregulatorofleaf[J].Genes,2019,10(8):584.senescence
[96]KaiF,BibiN,GanSS,etal.AnovelNAPmemberGhNAPis
ossypiumhirsutum[J].JournalofinvolvedinleafsenescenceinGExperimentalBotany,2015,66(15):4669-4682.
97]KimJH,WooHR,KimJ,etal.Trifurcatefeed-forward
regulationofage-dependentcelldeathinvolvingmiR164inArabidopsis[J].Science,2009,323(5917):1053-1057.98]BalazadehS,SiddiquiH,AlluAD,etal.Ageneregulatorynetwork
controlledbytheNACtranscriptionfactorANAC092/AtNAC2/ORE1duringsalt-promotedsenescence[J].ThePlantJournal:forCellandMolecularBiology
,2010,62(2):250-264.99]MahmoodK,El-KereamyA,Sung-HyunK,etal.ANAC032
positivelyregulatesage-dependentandstress-inducedsenescenceinA
rabidopsisthaliana[J].PlantandCellPhysiology,2016,57(10):2029-2046.
100]SakurabaY,Su-HyunH,Sang-HwaL,etal.Arabidopsis
NAC016promoteschlorophyllbreakdownbydirectlyupregulatingSTAYGREEN1transcription[J].PlantCellReports,2016,35(1):155-166.
101]FanZQ,TanXL,ChenJW,etal.BrNAC055,anovel
transcriptionalactivator,regulatesleafsenescenceinChinesefloweringcabbagebymodulatingreactiveoxygenspeciesproductionandchlorophylldegradation[J].JournalofAgriculturalandFoodChemistry,2018,66(36):9399-9408.
102]MaXM,ZhangYJ,VeronikaT,etal.TheNACtranscription
factorSlNAP2regulatesleafsenescenceandfruityieldintomato[J].PlantPhysiology,2018,177(3):1286-1302.
103]SakurabaY,PiaoWL,LimJH,etal.RiceONAC106inhibitsleaf
senescenceandincreasessalttoleranceandtillerangle[J].PlantandCellPhysiology,2015,56(12):2325-2339.
104]ZhuZG,LiGR,YanCH,etal.DRL1,encodingaNAC
transcriptionfactor,isinvolvedinleafsenescenceingrapevine[J].InternationalJournalofMolecularSciences,2019,20(11):2678.
105]JensenMK,LindemoseS,MasiFD,etal.ATAF1transcription
factordirectlyregulatesabscisicacidbiosyntheticgeneNCED3inArabidopsisthaliana[J].FEBSOpenBio,2013,3(1):321-327.106]YangSD,SeoPJ,YoonHK,etal.TheArabidopsisNAC
transcriptionfactorVNI2integratesabscisicacidsignalsintoleafsenescenceviatheCOR/RDgenes[J].ThePlantCell,2011,23(6):2155-2168.
107]FujitaM,FujitaY,MaruyamaK,etal.Adehydration-induced
NACprotein,RD26,isinvolvedinanovelABA-dependent
MolecularBiology,2007,63(2):289-305.
[111]YoshiiM,YamazakiM,RakwalR,etal.TheNACtranscription
factorRIM1ofriceisanewregulatorofjasmonatesignaling[J].ThePlantJournal,2010,61(5):804-815.
[112]XuC,LuSC,WangYF,etal.OsNAC2encodingaNAC
transcriptionfactorthataffectsplantheightthroughmediatingthegibberellicacidpathwayinrice[J].ThePlantJournal,2015,82(2):302-314.
[113]KimSG,LeeAK,YoonHK,etal.Amembrane-boundNAC
transcriptionfactorNTL8regulatesgibberellicacid-mediatedsaltsignalinginArabidopsisseedgermination[J].ThePlantJournal,2008,55(1):77-88.
[114]HuH,DaiM,YaoJ,etal.OverexpressingaNAM,ATAF,and
CUC(NAC)transcriptionfactorenhancesdroughtresistanceandsalttoleranceinrice[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2006,103(35):12987-12992.
[115]NakashimaK,TranLS,VanNguyenD,etal.Functionalanalysis
ofaNAC-typetranscriptionfactorOsNAC6involvedinabioticandbioticstress-responsivegeneexpressioninrice[J].ThePlantJournal,2007,51(4):617-630.
[116]ZhengXN,ChenB,LuGJ,etal.OverexpressionofaNAC
transcriptionfactorenhancesricedroughtandsalttolerance[J].BiochemicalandBiophysicalResearchCommunications,2009,379(4):985-989.
[117]HongYB,ZhangHJ,HuangL,etal.Overexpressionofastress-
responsiveNACtranscriptionfactorgeneONAC022improvesdroughtandsalttoleranceinrice[J].FrontiersinPlantScience,2016,7:4.
[118]ShenJB,LvB,LuoLQ,etal.TheNAC-typetranscription
factorOsNAC2regulatesABA-dependentgenesandabioticstresstoleranceinrice[J].ScientificReports,2017,7(1):40641.[119]LiuYC,JieS,WuYR.ArabidopsisATAF1enhancesthe
tolerancetosaltstressandABAintransgenicrice[J].JournalofPlantResearch,2016,129(5):955-962.
[120]RahmanH,RamanathanV,NallathambiJ,etal.Over-expression
ofaNAC67transcriptionfactorfromfingermillet(EleusinecoracanaL.)conferstoleranceagainstsalinityanddroughtstressinrice
[J].BMCBiotechnology,2016,16(S1):35.[121]GuanHR,XinL,FeiN,etal.OoNAC72,aNAC-TypeOxytropis
[[[[[[[[[[[江苏农业科学 2020年第48卷第18期
ochrocephalatranscriptionfactor,conferringenhanceddroughtandrabidopsis[J].FrontiersinPlantScience,saltstresstoleranceinA2019,10:890.
[122]PangXY,XueM,RenMY,etal.Ammopiptanthusmongolicus
stress-responsiveNACgeneenhancesthetoleranceoftransgenicArabidopsisthalianatodroughtandcoldstresses[J].GeneticsandMolecularBiology,2019,42(3):624-634.
[123]YongY,ZhangY,LyuY.AStress-ResponsiveNACtranscription
LlNAC2)interactswithLlDREB1andfactorfromtigerlily(LlZHFD4andenhancesvariousabioticstresstoleranceinArabidopsis[J].InternationalJournalofMolecularSciences,2019,20(13):3225.
—53—
ArabidopsisNACtranscriptionfactorJUB1regulatesGA/BRmetabolismandsignalling[J].NaturePlants,2016,2(3):16013.[135]LinRM,ZhaoWS,MengXB,etal.RicegeneOsNAC19encodes
anovelNAC-domaintranscriptionfactorandrespondstoinfectionbyMagnaporthegrisea[J].PlantScience,2007,172(1):120-130.[136]WangXE,BasnayakeBS,ZhangHJ,etal.TheArabidopsis
ATAF1,aNACtranscriptionfactor,isanegativeregulatorofdefenseresponsesagainstnecrotrophicfungalandbacterial[J].MolecularPlant-MicrobeInteractions,2009,22pathogens(10):1227-1238.
[137]DelessertC,KazanK,WilsonIW,etal.Thetranscriptionfactor
ATAF2repressestheexpressionofpathogenesis-relatedgenesin124]BorgohainP,SahaB,AgrahariR,etal.SlNAC2overexpressionin
Arabidopsisresultsinenhancedabioticstresstolerancewithalterationinglutathionemetabolism[J].Protoplasma,2019,256(4):1065-1077.
125]HeK,ZhaoX,ChiXY,etal.AnovelMiscanthusNAC
transcriptionfactorMlNAC10enhancesdroughtandsalinitytoleranceintransgenicArabidopsis[J].JournalofPlantPhysiology,2019,233:84-93.
126]YangXW,KangH,ChiXY,etal.MiscanthusNACtranscription
factorMlNAC12positivelymediatesabioticstresstoleranceintransgenicArabidopsis[J].PlantScience,2018,277:229-241.127]CaoHS,LiW,MuhammadAN,etal.Ectopicexpressionof
pumpkinNACtranscriptionfactorCmNAC1improvesmultipleabioticstresstoleranceinArabidopsis[J].FrontiersinPlantScience,2017,8:2052.
128]LeiH,HongYB,ZhangHJ,etal.RiceNACtranscriptionfactor
ONAC095playsoppositerolesindroughtandcoldstresstolerance[J].BMCPlantBiology,2016,16(1):203.
129]HeL,ShiXX,WangYM,etal.ArabidopsisANAC069bindsto
C[A/G]CG[T/G]sequencestonegativelyregulatesaltandosmoticstresstolerance[J].PlantMolBiol,2017,93(4/5):369-387.
130]AnJP,RuiL,QuFJ,etal.AnappleNACtranscriptionfactor
negativelyregulatescoldtoleranceviaCBF-dependentpathway[J].JournalofPlantPhysiology,2018,221:74-80.
131]LinH,JingB,XuJY,etal.NovelmaizeNACtranscriptional
repressorZmNAC071confersenhancedsensitivitytoABAandosmoticstressbydownregulatingstress-responsivegenesintransgenicArabidopsis[J].JournalofAgriculturalandFoodChemistry,2019,67(32):8905-8918.
132]XinH,ZhuLF,LianX,etal.GhATAF1,aNACtranscription
factor,confersabioticandbioticstressresponsesbyregulatingphytohormonalsignalingnetworks[J].PlantCellReports,2016,35(10):2167-2179.
133]FangLC,SuLY,SunXM,etal.ExpressionofVitisamurensis
NAC26inArabidopsisenhancesdroughttolerancebymodulatingjasmonicacidsynthesis[J].JournalofExperimentalBotany,2016,67(9):2829-2845.
134]Shahnejat-BushehriS,TarkowskaD,SakurabaY,etal.
Arabidopsis[J].ThePlantJournal,2005,43(5):745-757.[138]ChenYJ,PereraV,ChristiansenMW,etal.ThebarleyHvNAC6
transcriptionfactoraffectsABAaccumulationandpromotesbasalresistanceagainstpowderymildew[J].PlantMolecularBiology,2013,83(6):577-590.
[139]JensenMK,JesperHR,GregersenPL,etal.TheHvNAC6
transcriptionfactor:apositiveregulatorofpenetrationresistanceinbarleyandArabidopsis[J].PlantMolecularBiology,2007,65(1/2):137-150.
[140]PengXJ,WangQ,YuW,etal.AmaizeNACtranscriptionfactor,
ZmNAC34,negativelyregulatesstarchsynthesisinrice[J].PlantCellReports
,2019,38(12):1473-1484.[141]ZhangZY,DongJQ,ChenJ,etal.NAC-typetranscription
factorsregulateaccumulationofstarchandproteininmaizeseeds[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2019,116(23):11223-11228.[142]LiWJ,XueH,YiC,etal.Awheattranscriptionfactorpositively
setsseedvigourbyregulatingthegrainnitratesignal[J].NewPhytologist,2020,225(4):1667-1680.
[143]GaoY,WeiW,ZhaoXD,etal.ANACtranscriptionfactor,
NOR-like1,isanewpositiveregulatoroftomatofruitripening[J].HorticultureResearch,2018,5(1):75.
[144]Carrasco-OrellanaC,StappungY,Mendez-YaezA,etal.
Characterizationofaripening-relatedtranscriptionfactorFcNAC1fromFragariachiloensisfruit[J].ScientificReports,2018,8(1):10524.
[145]JahanMA,HarrisB,LoweryM,etal.TheNACfamily
transcriptionfactorGmNAC42-1regulatesbiosynthesisoftheanticancerandneuroprotectiveglyceollinsinsoybean[J].BMCGenomics,2019,20(1):149.
[146]GuoSY,DaiSJ,PrashantKS,etal.Amembrane-bound
NAC-liketranscriptionfactorOsNTL5repressesthefloweringinOryzasativa[J].FrontiersinPlantScience,2018,9:555.[147]ZhangHH,CuiXY,GuoYX,etal.Piceawilsoniitranscription
factorNAC2enhancedplanttolerancetoabioticstressandparticipatedinRFCP1-regulatedfloweringtime[J].PlantMolecularBiology,2018,98(6):471-493.
[148]BinZ,HuoDA,HongXX,etal.TheSalviamiltiorrhizaNAC
transcriptionfactorSmNAC1enhancesZinccontentintransgenicArabidopsis[J].Gene,2019,688:54-61.
[[[[[[[[[[[
因篇幅问题不能全部显示,请点此查看更多更全内容