atIntermediatepT
CharlesB.Chiu1andRudolphC.Hwa2
1
arXiv:0704.2616v1 [nucl-th] 19 Apr 2007CenterforParticlePhysicsandDepartmentofPhysics
UniversityofTexasatAustin,Austin,TX78712,USA
2
InstituteofTheoreticalScienceandDepartmentofPhysicsUniversityofOregon,Eugene,OR97403-5203,USA
Abstract
ThedualobservationoftheΩproductionincentralAu-AucollisionshavingbothanexponentialpTdistributionandalsoassociatedparticlesabovethebackgroundhasbeenreferredtoastheΩpuzzle.Wegiveaquantitativedescriptionofhowthatpuzzlecanbeunderstoodintermsofphantomjets,whereonlyridgeswithoutpeaksareproducedtogiverisetoboththeΩtriggeranditsassociatedparticles.Intheframeworkofrecombinationofthermalpartonsweareabletoreproduceboththe∆φdistributionandthetrigger-momentumdependenceoftheyieldoftheassociatedparticles.Wemakepredictionsonotherobservablesthatcanbecheckedbyfurtheranalysesofthedata.
1
1Introduction
RecentdataontheproductionofφandΩattheRelativisticHeavyionCollider(RHIC)atintermediatepThaverevealedimportantpropertiesofthesquarksinthedensemediumcreatedbythecollisionofAunucleiat200GeV[1,2].BothφandΩexhibitexponentialbehaviorintheirpTdistributionsuptopT≈4.5GeV/c.SuchpropertiesoftheφandΩspectrahavebeenreproducedin[3]asconsequencesofrecombinationofthermalpartons.Theimplicationisthatbeforehadronizationthedensesystemconsistsofthermalizedpartonsthatincludethesquarks.Thatisthemaincharacteristicthatquark-gluonplasma(QGP)shouldpossess.TheproductionofφandΩprovidesaclearwindowthroughwhichonecanobservethethermalsourcewithoutthecontaminationofshowerpartonsduetohardscattering,whichissuppressedforsquarks.SinceQGPisadescriptionofthebulkmedium,onecanreasonablyaskwhatthepropertiesareattheedgeofthatmedium,namely,whenthepartonickTis>1GeV/c.RecentdatafromSTARoncorrelationthatusesΩastriggerintheintermediatepTregionhasrevealedinterestingpropertiesoftheassociatedparticles[4].ThedualfeaturesoftheexponentialspectrumofΩandtheexistenceofassociatedparticlesabovebackgroundhavebeenreferredtoastheΩpuzzle[5].Thispaperisaimedatprovidingaquantitativeresolutionofthatpuzzle.
ParticlesproducedatintermediateandhighpTinheavy-ioncollisionsareassociatedwithjetsduetohardscatteringofpartons.Themediumeffectonhadronizationhasbeensuccessfullydescribedintherecombinationmodelintermsoftherecombinationofthermalandshowerpartons[6].Thesingle-particlepTdistributionsofπ,Kandparewellrepro-duced,showingpower-lawdeviationfromtheexponentialbehavioratlowpTthatisdueto
2
therecombinationofthermalpartons.ThehadronizationmechanismthatworksforthoseparticlesthathavelightquarksasconstituentsdoesnotworkfortheproductionofΩthatcontainsonlysquarks.Strangeshowerpartonsaresuppressedwhatevertheinitiatinghardpartonmaybe[3].ForthatreasonthepTdistributionofΩisessentiallyexponentialuptothehighestmeasuredvalueofnearly6GeV/c[7],ashasbeenwellreproducedbytherecombinationofthreethermalsquarks[3].
SinceshowersquarkdoesnotparticipateintheformationofΩ,itisnaturaltoconcludethatjetsplaynoroleandthattheproductionofΩisnotaccompaniedbyanyassociatedparticles,whichareusuallypresentineventstriggeredbylessstrangehadrons.Thedistri-butionsofassociatedparticlesinthelattercasehavealsobeensatisfactorilydescribedbytherecombinationofthermalandshowerpartonsinpT[8],aswellasin∆ηand∆φ[9].Withoutjetproductionthereshouldbenojetstructurecharacterizedbyassociatedparticlesdistinguishablefromthebackground.
ThediscoverythatΩtriggerisaccompaniedbyassociatedparticlesabovethebackgroundhasbeenastounding[4,10,11].Howcanatriggerparticleformedbythermalpartonshavepartnersabovethebackground,sincetheyarepresumablyalsoofthermalorigin?ThatistheΩpuzzle.
2TheRidge
Conventionaljetstructureconsistsofapeakaboveapedestal,whenthetriggermomentum
assoc
)arenottoohigh.STARhasadoptedthe(ptrigT)andthoseoftheassociatedparticles(pT
terminologyJet(J)forpeakandridge(R)forpedestal.TheJtoRratiooftheiryields
3
assoc
dependsonptrigandcentrality[12].Forptrig>4GeV/candpassoc>2.3GeV/cinT,pTTT
centralAu-Aucollisionsat200GeV,ithasbeenshownthatJ/R∼1.However,atlowervaluesofpassoctheJ/Rratioissmaller,becomingaslowas0.1−0.15atpassoc∼1.2GeV/cTT[13].ForΛ-triggeredeventsthatratioisevenlower(<0.1).NodataforthatratioyetexistforΩ-triggeredevents,butonemayanticipateittobefurtherloweraccordingtothetrendofincreasingstrangeness.Ifthatistrue,thentheparticlesassociatedwithΩwillnotexhibitanysignificantpeakinthe∆ηdistribution,whichiswhereJandRareusuallyseenwithnon-strangetriggers.Onthebasisofthestudydonein[3],whereΩisshowntooriginatefromthermalsources,wecanassertthattheJetcomponentshouldbeabsent,andthatonlytheridgewillbeobserved.
Thenotionofphantomjetwassuggestedin[5]todescribethephenomenoninwhichajetisproducedwithouttheJetpartbeingobserved.Theridgethatisobservedprovidestheevidencethatthereisanunderlyingjet.Suchascenariohasnotbeenconfirmedbydata,butisourconjectureasasolutiontotheΩpuzzle,thequantitativedescriptionofwhichwillbegiveninthefollowingtwosections.AconfirmationwouldbeinevidencewhentheΩ-triggered∆ηdistributionexhibitsaridgewithoutapeak.Atthispointthestatisticsinthedatafor2.5 4 < ofthebulkmedium.Thescatteredhardpartontraversesthemediumandlosesenergyonitswayouttothesurface.Theenergydepositedinthemediumenhancesthethermalmotionofthepartonsinthevicinityofthetrajectory.Thosepartonshadronizeandformtheridgethatisabovethebackground.Suchasequenceofprocessesisconventional,andhasbeendescribedsuccessfullyin[9]thatgivesboththe∆ηand∆φdistributions.However,theΩ-triggeredeventsarenotconventional,eventhoughtheunderlyingjetisconventionalasdescribedabove.Thereasonisthatthesquarksaresuppressedintheshower.WithoutthesshowerpartonsΩcannotbeformedasadirectconsequenceofhardscattering.Itcan,however,beformedindirectlyfromtheridgethatisthermalandhasamplesupplyofsquarks.EventstriggeredbyΩproducedthatwayarerareathighptrigT,sincethethermalspectrumisexponential.Thustheptrigthresholdissetlow,like2.5GeV/c.TheTcorrespondingpassocthresholdisevenlower,like1.5GeV/c,inordertohaveenoughstatisticsTtoproduceameaningfulassociatedparticledistribution.Whenpassocissolow,theridgeTcomponentdominatesoverthepeaksotheJ/Rratioisverysmall.Theordinaryjetthusandlowerpassoc.becomesaphantomjetundertheconditionoflowptrigTT IftheridgecansupplysquarkstoformtheΩtrigger,itcansurelysupplylightquarkstoproduceotherlower-masschargedhadrons.Thosearetheassociatedparticlesdetected[4].ThustheridgeofthephantomjetisthekeytothesolutionoftheΩpuzzle.TheΩhasapTdistributionthatisexponential,ontheonehand,becauseitisformedbythethermalpartonsintheridge,andithasassociatedparticles,ontheotherhand,becausetheridgeisabovethebackground. 5 3TheBackground Ouraimnowistodescribethe∆φdistributionoftheassociatedparticlesineventstriggeredbyΩ[4].Thesignalislessthan4%ofthebackgroundheight.Thusinorderforustoreproducequantitativelythesignal,itisnecessarytoshowfirstthatthebackgroundcanbeaccuratelyobtainedinourformalism.Thereisav2oscillationduetoellipticflow,resultingin[4] dNbg dp1dη1 andthetwo-particledistributionby N(1,2)= dNΩ,2 (2) d∆ηd∆φ = pd pc dp1 p1 pa dp2 1 −1 dη1N(1,2) wherepa=1.5,pc=2.5andpd=4.5allinunitsofGeV/c.ForthebackgrounddistributionN(1,2)isfactorizable,i.e., Nbg(1,2)=N(1)Nbg(2). (5) ItfollowsthatontherighthandsideofEq.(4)theη1integrationsinthenumeratorandthedenominatoraretriviallycancelled,leaving dNbg pd pc dp1N(p1) ,where Nbg (pp1 dNbg 1,∆η,∆φ)= pdp2 a p1 dNbg dp2d∆ηd∆φ ≡ pdp2 a dq =C−q/T0qe0, where C0=23.2(GeV/c)−1, T0=0.317GeV/c.7 (6) (9) (10) Therecombinationofthosepartonstoformthermalpionsisgivenby[6] dNπ thp2 p0 dqT0(q)T0(p−q)= C0 2dp= 4 2d∆φ 3 (C0T0)2h(p1,T0), (13) where h(pp1,T0)≡f a T,T00 , (14) with f(x,T0)=(1+b)(1+x)+cT0(2+2x+x2)e−x. (15) Tocarryouttheintegrationsoverp1inEq.(6)weneedthesingle-particledistributionfortheproductionofΩ,whichcanbedeterminedinthesamewayasforprotonbyrecombination[3,6],exceptthatitissimplerwhenonlythermalsquarkscontribute.Theresultis[3] dNΩ p31 27wherep10=(p21+MΩ2 ) 1/2 and Ts=0.33GeV/c. (17) ThenormalizationfactorCΩisimmaterial,sinceitappearsinboththenumeratorandthedenominatorofEq.(6),sotheycanceleachother. Integratingbothoverp1and∆ηinEq.(6),wefinallyhave dNbg 3 (C0T0)2h(p1,T0), (18) where h(p1,T0)= pdpdpdNΩ p1 a c dp≡f (19) 1 T,T0 0 .ThelasttermontherighthandsideofEq.(19)isgivenby f( p1 T03 s −xI(xs,ys) (x2+µ21/2,(20) 0s) ewiththevariableofintegratonx=p1/Ts.Thelimitsofintegrationarex0s=pc/T0sandy0s=pd/T0s,whereT0s=T0Ts/(T0+Ts).Theothersymbolsarez=(T0s/T0)x,τ0=cT0andµ0s=mΩ/T0s.Thedenominatorofthefirstfactorisgivenby I(xs,ys)= ys xdx x3 s partonsgiveninEq.(10),wecannowcomputethebackgroundheightfortheassociatedparticlesandobtain dNbg ThebasicdifferencebetweentheridgeandthebackgroundisthatfortheformerwehavenewparametersCandTfortheenhancedthermalpartons,whileforthelatterC0andT0aregiveninEq.(10).Thereisalsoa∆φdependencewhichisforcedtovanishat∆φ=±1duetothesubtractionprocedureusedinthedataanalysis.Wewrite C(∆φ)=C0H(∆φ)=C0H0exp−(∆φ)/2σ, 2 2 (23) wherethevaluesofH0andσarediscussedbelow.Sinceassociatedparticlesintheridgeareunidentifiedchargedhadrons,justasinthebackground,weobtainbythermalrecombinationasdoneintheprecedingsection dNR 3 (C0T)H(∆φ)h(p1,T)− 2 dNbg thenear-sideyieldforvarioustriggerhadronsthatallexhibitsimilardependenceonptrigT.IncontrasttodNR/d∆φwhichinvolvesintegrationoverp1,theyieldY(p1)involvesintegrationover∆φinstead.Ifwedenote thentheyieldis H ˜= 1 −1 d∆φH(∆φ),(25) Y(p1)= 4 roughlyinaccordwiththedatanotonlyforΩtrigger,butalsoforΛandΞtriggers,shownalsoinFigs.1and2.AlthoughtheJ/RratioforΛisnotzero,beinglessthan0.1wouldstillimplythattheridgeisdominant,soitsassociatedparticleswouldarisemainlyfromtheridge,withshowerpartonsplayingaminimalrole.ThecasewithΞtriggerwouldbeevenclosertothatoftheΩtrigger. Assumingthattherangeoftheridgein∆ηisfrom−2to+2,aswehavedoneinEq.(24)inaccordancetothepresentexperimentalcut,wecancalculatethetotalnumberofchargedparticlesintheridgecorrespondingtoanintervalIinthe∆φdistribution RNI = I/2 −I/2 d∆φ dNR ∆η = RNI 3 2C0 ˆIh(p1,T)−T2Ih(p1,T0),TH0 2 (29) I=1,are ˆI=I/2d∆φH(∆φ).Thepredictedridgeheightsforthetwocasesconsidered,forwhereH−I/2 (a) dNR d∆η =0.054. (30) Ifthedataontheridgein∆ηturnouttohaveawidthdifferentfrom4,thentheheightwillalsobedifferentaccordingly.Subjecttothatqualification,aheightof0.06isourfirst-orderprediction.Itisofinteresttonotethattheridgeheightenvisionedhereisroughlythesame<6GeV/candastheoneobservedin[14]forunidentifiedchargedtriggerwith4 5Conclusion WehavepresentedaquantitativedescriptionofhowtheΩpuzzlecanberesolved.WehaveshownthattheparticlesassociatedwithΩcanbeunderstoodasproductsofrecombinationofthermalpartonsintheridge.Althoughthenon-perturbativedynamicalprocessthatleadstotheformationoftheridgecannotbecalculated,thereareaspectsofthedatathatneedcoordinatedexplanationinaspecifichadronizationscheme.WehavereproducedinFigs.1and2boththe∆φdistributionandtheptrigdependenceoftheyieldoftheassociatedTparticles.OneparameterH0isusedtofittheheightofdNR/d∆φ,whichdependsontheexactvalueofH0sosensitively(towithin1%inthemarginoferror)thatitisbeyondthescopeofanydynamicaltheorytopredict.Whatwehavelearnedfromthisphenomenologicalstudyisthattheparticlesinthepeakobservedinthe∆φdistributionareallfromtheridge,contrarytotheusualidentificationofpeakswithJets.Phantomjetshavenopeaks.Ourfindingimpliesthatthereshouldnotbeapeakinthe∆ηdistribution,stilltobeproducedbyfurtheranalysisofthedata.Whenthatdistributionbecomesavailableandshowsonlyaridge,thenoursolutionoftheΩpuzzlewillfinallybeconsideredconfirmed. Intheframeworkinwhichwehavecalculatedthe∆φdistributionoftheassociatedparticles,itisimpliedthatthepTdistributionofthepionswillhaveaninverseslopeT=0.33GeVfor1.5 14 theproductionofφunderthesameconditions.BothφandΩareproducedfromthesameenhancedthermalsource,sotheirassociatedparticlesshouldbothbeformedfromtheridgesofsimilarcharacteristics. Acknowledgment WearegratefultoJanaBielcikovaforhervaluablehelpandtogetherwithBettyAbelevwethankthemfortheircooperativecommunication.Thisworkwassupported,inpart,bytheU.S.DepartmentofEnergyunderGrantNo.DE-FG02-92ER40972. References [1]B.I.Abelevetal.(STARCollaboration),nucl-ex/0703033. [2]J.Adamsetal.(STARCollaboration),Phys.Rev.Lett.92,182301(2004).[3]R.C.HwaandC.B.Yang,Phys.Rev.C(toappear),nucl-th/06020243.[4]J.Bielcikova(forSTARCollaboration),nucl-ex/0701047.[5]R.C.Hwa,nucl-th/0701018. [6]R.C.HwaandC.B.Yang,Phys.Rev.C70,024905(2004). [7]J.Adamsetal.(STARCollaboration),Nucl.Phys.A757,102(2005). [8]R.C.HwaandC.B.Yang,Phys.Rev.C70,054902(2004);R.C.HwaandZ.Tan, Phys.Rev.C72,057902(2005). 15 [9]C.B.ChiuandR.C.Hwa,Phys.Rev.C72,034903(2005).[10]L.Ruanetal.(forSTARCollaboration),nucl-ex/0701070.[11]O.Barranikova,plenarytalkatQuarkMatter2006. [12]J.Putschke,paralleltalkatQuarkMatter2006,nucl-ex/0701074.[13]J.Bielcikova,talkgivenatHardProbes2006,nucl-ex/0612028. [14]J.Adamsetal.(STARCollaboration),Phys.Rev.Lett.95,152301(2005). 16 dNR+bg/d∆φ7.27 (a)(b)bgΩΞΛ6.8−2−10∆φ12Figure1:(Coloronline)CalculatedassociatedparticledistributionsineventstriggeredbyΩfor(a)solid(red)line,H0=0.795,and(b)dashed(blue)line,H0=0.790.Thedatapointsarefrom[4]forthreehyperontriggers.Thedashed-dottedlineisthebackground. 17 Nearside yield/trigger0.50.40.30.20.102(a)(b)ΩΞΛ3ptrig (GeV/c)T45Figure2:(Coloronline)TheyieldoftheassociatedparticlesonthenearsideforΩtriggerasafunctionofthetriggermomentum.Thesolid,dashedlinesanddatapointsareasinFig.1. 18 因篇幅问题不能全部显示,请点此查看更多更全内容