arXiv:math/0404378v2 [math.NT] 14 May 2004EYALZ.GOREN&KRISTINE.LAUTER
Abstract.OnecandefineclassinvariantsforaquarticprimitiveCMfieldKasspecialvaluesofcertainSiegel(orHilbert)modularfunctionsatCMpointscorrespondingtoK.Suchcon-structionsweregivenin[DSG]and[Lau].Weprovideexplicitboundsontheprimesappearinginthedenominatorsofthesealgebraicnumbers.Thisallowsus,inparticular,toconstructS-unitsincertainabelianextensionsofK,whereSiseffectivelydeterminedbyK.
1.Introduction
OneofthemainproblemsofalgebraicnumbertheoryistheexplicitdescriptionofrayclassfieldsofanumberfieldK.Besidesthecaseofthefieldofrationalnumbers,thetheoryismostadvancedinthecasewhereKisacomplexmultiplication(CM)field.Effectiveconstructionsareavailableusingmodularfunctionsgeneralizingtheellipticmodularfunctionj;oneconstructsmodularfunctionsasquotientsoftwomodularformsonaSiegelupperhalfspaceandevaluatesatCMpointscorrespondingtoK.ThevalueslieinanexplicitlydeterminedextensionofthereflexfieldK∗ofK,thatdependsonthefieldoverwhichtheFouriercoefficientsofthemodularfunctionisdefined,onthelevelofthemodularfunction,andontheconductoroftheorderofKcorrespondingtotheCMpoint.Welooselycallmagnitudesconstructedthisway“classinvariants”ofK.TheterminologyisproposedbecausewhentheFouriercoefficientsarerationalandthelevelis1thevaluesofthemodularfunctionatCMpointslieinrayclassfieldsofK∗.Anoutstandingproblemistheeffectiveconstructionofunitsinabelianextensionsofnumberfields,eveninthecaseofcomplexmultiplication.AsolutionofthisproblemisexpectedtohavesignificantimpactonobtainingadditionalcasesofStark’sconjecture.Thecaseofcyclotomicunitsandellipticunitsiswelldeveloped,butinhigherdimensionalcaseslittlewasknown.Theessentialproblemisthatdivisorsofmodularfunctionscannotbesupportedattheboundaryofthemodulispace.ThepurposeofthispaperistoprovideexplicitboundsontheprimesappearinginthedenominatorsofclassinvariantsofaprimitivequarticCMfieldK.Thisyields,inparticular,anexplicitboundontheprimesdividingtheinvariantsu(a,b)constructedin[DSG],thusyieldingS-unitslyinginaspecificabelianextensionofK∗foranexplicitfinitesetofprimesS.ItalsoyieldsclasspolynomialsforprimitivequarticCMfieldswhosecoefficientsareS-integersasconjecturedin[Lau].
2.Elementsofsmallnorminadefinitequaternionalgebra
2.1.Simultaneousembeddings.LetB=Bp,∞be“the”quaternionalgebraoverQramifiedat{p,∞}.ConcretemodelsforBcanbefoundine.g.[Vig,p.98].LetTrandNbethe(reduced)traceandnormonBandx→
vj))=p2;
cf.[Piz,Prop.1.1].Further,usingthisbasiswemayidentifyB⊗RwithR4.Thebilinearformα,β=Tr(α
1991MathematicsSubjectClassification.Primary11G15,11G16Secondary11G18,11R27.
1
2EYALZ.GOREN&KRISTINE.LAUTER
matrixMwithevendiagonalentries,whichispositivedefiniteandsatisfiesdet(M)=p2.ItdefinesaninnerproductonR4.Weletr=2N(r).Notethattheco-volumeofR(theabsolutevalue√ofthevolumeofafundamentalparallelepiped)isp.LetKi=Q(
Proof.Oneverifiesthatki=±mi√andmiisodd,and±mi
√
4
.
Di)/2ifDi≡1(mod4)
p/8(<
√
−N(x)],Z[
p/8belongtoO1.Inparticular,foreveryconstantA<
A+2.
Corollary2.2.3.Letji,i=1,2,betwosingularj-invariants,jicorrespondingtoanellipticcurveEiwithcomplexmultiplicationbyanorderOiofconductormiinaquadraticimaginaryfieldKi⊂C.SupposethatK1=K2.Letpbeaprimeof
4
√
.
Proof.If(j1−j2)∈pthenE1∼=E2(modp).LetE=E1(modp).SinceK1=K2,EissupersingularandafterfixinganisomorphismEnd(E)⊗Q∼=B,End(E)isamaximalorderofBcontainingO1,O2.
CLASSINVARIANTS3
2.3.Aremarkonsuccessiveminima.LetE,E′betwosupersingularellipticcurvesover
xMx)1/2.Geometryofnumbers,see[Sie,III§§3-4,X
§3],gives24(4!V)−1≤µ1·µ2·µ3·µ4≤24V−1,whereVisthevolumeoftheunitballwithrespecttof.SinceV=2π2/pwefindthat
2
t
(2.3)
1
π2
·p.
Proof.IfE=E′,thenµ1=1.Theembeddingisoptimalbecausetheelementofminimalnormindependentof1inanorderdeterminestheorder,cf.proofofLemma2.1.1.LetybeanelementforwhichthethirdsuccessiveminimumisobtainedandK2=Q(y).Bydefinitiony∈K1andwe√
N(x)areinthesituationof§2.1.WegetusingEquation(2.1),
N(xy)=µ2µ3.Wealsohaveµ24≥µ2µ3≥1.
Analysisoftheinequalitiesgivestheresult.ByEquation(2.3)
µ21
≤
√
2π
Proposition2.3.1.AssumethatE=E′.Letxbeanelementforwhichµ2isobtained,K1=
4
Q(x).ThenZ[x]isanorderofK1,optimallyembeddedinEnd(E).Wehaveµ22≤
√
1421/31/41/2
·p,·p1/2≤µ2µ3≤·p·p.≤µ≤4
2π31/3·π2/32
√E′
Fp.LetNbetheminimalinteger
over
2
√
p∼0.9004
suchthatforanysupersingular
√
p.NumericalevidenceshowsthatN≥0.7
d),
ford>0asquarefreeinteger.WriteK=d]atotallynegativeelement.√EveryquarticCMfieldcanbewrittenthiswayandthereismuchknownontheindexofZ[r]inOK.ThefollowingareequivalentforCMfieldsofdegree4:(i)Kisprimitive,i.e.,doesnotcontainaquadraticimaginaryfield;(ii)Kiseithernon-Galois,oracyclicGaloisextension;(iii)NQ(√
√K+(
∨:=Hom(E,E),F.Leta=Hom(E,E),ap2112
1aRi=End(Ei).ThenEnd(E1×E2)=R∨aR2.Theproductpolarizationinducedbythe
divisorE1×{0}+{0}×E2onE1×E2inducesaRosatiinvolutiondenotedby∨.Thisinvolution
4EYALZ.GOREN&KRISTINE.LAUTER
ab∨a∨c∨b
=b∨d∨,wherea∨,b∨etc.denotesthedualisogeny.Notethata∨=→isgivenbyacdcd
d.TheRosatiinvolutionisapositiveinvolution.Theembeddingproblem:Tofindaringembeddingι:OK֒→End(E1×E2)suchthattheRosatiinvolutioncomingfromtheproductpolarizationinducescomplexconjugationonOK.Asweshallseebelow,theproblemisintimatelyrelatedwithboundingprimesinthedenominatorsofclassinvariants.
Theorem3.0.4.Iftheembeddingproblemhasapositivesolutionthenp≤16·d2(Tr(r))2.Proof.√Assumesuchanembeddingιexists.Thenι(OK+)isfixedbytheRosatiinvolution,thus
d→M=
Letuswrite
ab
,
b∨−a
√
a∈Z,b∈a,a2+bb∨=d.
√
TheconditionoftheRosatiinvolutioninducingcomplexconjugationisequivalenttoι(
√
r).So,ifι(
r=α+βd|.
r)=
√
Afurtherconditionisobtainedfromι(
xy
,
−y∨w
00
x∈R1,w∈R2,y∈a.
CLASSINVARIANTS5
WeusethenotationN(s)=ss∨,N(y)=yy∨,etc..Notethatfors∈Rithisdefinitionofthenormistheusualoneand,inanycase,undertheinterpretationofelementsasendomor-phismsN(s)=deg(s)andsoN(st)=N(s)·N(t)whenitmakessense.Itfollowsfrom(⋆)that
(⋆⋆)
N(x)+N(y)=−(α+βa)N(w)+N(y)=−(α−βa).
Letϕ:E1→E2beanon-zeroisogenyofdegreeδ.Forf∈End(E1×E2)thecompositionofrationalisogenies
E1×E1−→E1×E2−→E1×E2−→E1×E1,
(1,ϕ)
f
(1,δ−1ϕ∨)
givesaringhomomorphismEnd0(E1×E2)−→End0(E1×E1)thatcanbewritteninmatrixformas
f11f12f11f12ϕf=→−1∨.
f21f22δϕf21δ−1ϕ∨f22ϕLetψbethecompositionK−→End0(E1×E2)−→End0(E1×E1).Thenψisanembeddingof
ringswiththeproperty
10
(3.4)ψ(OK)⊂M2(R1).
0δ
√ab∨r),Chooseϕ=y.Takingf=b∨−a(correspondingto
theembeddingψisdeterminedby
√xδ
.r)=(3.5)ψ(
−1ywy∨/δWeconcludethat
S={by∨,yb∨,x,ywy∨}⊂R1.
Let
δ1
=min{−(α−βa),−(α+βa)}=|α|−|β|·|a|,
=|α|+|β|·|a|.
δ2=max{−(α−βa),−(α+βa)}Itfollowsfrom(3.1)and(⋆⋆)
N(by∨)=N(yb∨)≤dδ1,
N(x)≤δ2.
2,64δ2}.ThenN(by∨),N(yb∨)andN(x)areAssumethatp>16·d2(Tr(r))2≥max{64d2δ12√
allsmallerthan
6EYALZ.GOREN&KRISTINE.LAUTER
4.BadreductionofCMcurves
InthissectionwediscusstheconnectionbetweensolutionstotheembeddingproblemandbadreductionofcurvesofgenustwowhoseJacobianhascomplexmultiplication.WeshallassumeCMbythefullringofintegers,buttheargumentscaneasilybeadaptedtoCMbyanorder,atleastifavoidingprimesdividingtheconductoroftheorder.
4.1.Badreductionsolvestheembeddingproblem.FixaquarticprimitiveCMfieldK.√
r),r∈OK+,dapositiveinteger.LetCbeasmoothprojectivegenus2WriteK=Q(
curveoveranumberfieldL.WesaythatChasCM(byOK)ifJac(C)hasCMbyOK.BypassingtoafiniteextensionofLwemayassumethatChasastablemodeloverOLandthatalltheendomorphismsofJac(C)aredefinedoverL.SinceKisprimitive,Jac(C)isasimpleabelianvarietyandsoEnd0(Jac(C))=K.Inparticular,thenaturalpolarizationofJac(C),associatedtothethetadivisorC⊂Jac(C),preservesthefieldKandactsonitbycomplexconjugation.ItiswellknownthatJac(C)haseverywheregoodreduction.Itfollowsthatforeveryprimeidealp⊳OLeitherChasgoodreductionmoduloporisgeometricallyisomorphictotwoellipticcurvesE1,E2crossingtransverselyattheirorigins.Inthelattercasewehaveanisomorphismofprincipallypolarizedabelianvarietiesoverk(p)=OL/p,(Jac(C),C)∼=(E1×E2,E1×{0}+{0}×E2).SinceK֒→End(E1×E2)⊗QweseethatE1mustbeisogenoustoE2.Moreover,Eicannotbeordinary;thatimpliesthatK֒→M2(K1)forsomequadraticimaginaryfieldK1andoneconcludesthatK1֒→K,contradictingtheprimitivityofK.Weconclude
Lemma4.1.1.LetC/Lbeanon-singularprojectivecurveofgenus2withCMbyOK.AssumethatChasastablemodeloverOL.IfChasbadreductionmoduloaprimep|pofOLthentheembeddingproblemhasapositivesolutionfortheprimep.
ThefollowingtheoremnowfollowsimmediatelyusingTheorem3.0.4.
Theorem4.1.2.LetCbeanon-singularprojectivecurveofgenus2withCMbyOKandwithastablemodelovertheringofintegersOLofsomenumberfieldL.Letp|pbeaprimeidealofOL.Assumethatpisgreaterorequalto16·d2(Tr(r))2thenChasgoodreductionmodulop.4.2.Asolutiontotheembeddingproblemimpliesbadreduction.
Theorem4.2.1.Assumethattheembeddingproblemof§3hasasolutionwithrespecttoaprimitivequarticCMfieldK.ThenthereisasmoothprojectivecurveCofgenus2overanumberfieldLwithCMbyOK,whoseendomorphismsandstablemodelaredefinedoverOL,andaprimepofOLsuchthatChasbadreductionmodulop.
Ourstrategyforprovingthetheoremisthefollowing.Weconsideracertaininfinitesimaldefor-mationfunctorNforabeliansurfaceswithCMbyOK.WeshowthatNispro-representablebyaW(
Fp-pointxofSpec(Ru).WeprovethatRuisisomorphictothecompletedlocalringofapointonasuitableGrassmannvarietyanddeducethatRu⊗Q=0.Weconcludethatxcanbeliftedtocharacteristiczeroandfinishusingclassicalresultsinthetheoryofcomplexmultiplication.Beforebeginningtheproofproper,weneedsomepreliminariesaboutGrassmannvarieties.4.3.Grassmannschemes.ThefollowingappliestoanynumberfieldKwithaninvolution∗;wedenotethefixedfieldof∗byK+.Put[K:Q]=2g.
CLASSINVARIANTS7
4.3.1.
ConsiderthemoduleM0:=OK⊗ZW,W=W(
Fp-pointofit
liftstocharacteristiczero.ThatmeansthatforeverysubmoduleN1ofOK⊗Z
Fp=⊕p|pOK+/pep⊗Fp
are,respectively,freeOK+⊗ZWandOK+⊗Z
Fp,which
FpsubmoduleofB⊗W
Fp∼Fp,=
viz.(te).SincetheGrassmannschemeG′alwayshascharacteristiczerogeometricpointsandisprojective,aliftisprovidedby(any)characteristiczeropointofG′.
8EYALZ.GOREN&KRISTINE.LAUTER
InthesecondcasewehaveB⊗Wofrankeover
Fp[t]/(te)⊕
Fp
QpoverWandthateachliftingis
isotropicwhenconsideredasasubmoduleofB⊗WW′=A⊗WW′⊕A⊗WW′,whereW′isa“bigenough”extensionofW.Indeed,everygeometricpointoftheappropriateGrassmannscheme,beingproperoverSpec(W),extendstoanintegralpoint(definedoverafiniteintegralextensionW′/W).Suchageometricpointcorrespondstoachoiceof(ei)embeddingsA→
Fp).Thefollowingliftinglemma,thatholdsforanyCMfieldKandwhoseproofisgivenin§§4.4.1-4.4.4,isthekeypoint.
Lemma4.4.1.Let(A,λ,ι)beanabelianvarietywithCMover
Fp.Let(A′,λ′,ι′)beanabelianscheme
′1′overSwithCM.WeclaimthatH1dR(A/S)isafreeOK⊗ZS-moduleofrank1.SinceHdR(A/S)
isafreeS-moduleofrank2g,toverifythatitisafreeOK⊗ZS-moduleitisenoughtoprove
′Fp)isathatmodulothemaximalidealofS(cf.[DP,Rmq.2.8]),namely,thatH1dR(A⊗S
freeOK⊗ZFp/W)isafreeOK⊗ZW-module
4.4.2.Thepolarizationλinducesaperfectalternatingpairing·,·onthefreeOK⊗ZW-module1(A/W),whichweidentifywithM:=O⊗W.ThispairinginducescomplexconjugationHcrys0KZ
onOKandreducesmoduloptothepairinginducedbyλonH1dR(A/
)→H1dR(A/F
p
Qp(ϕ◦∗).consistingofachoiceofonesubspaceoutofeachpair
RecallthataCMtypeΦofKisasubsetofHom(K,C)(orofHom(K,
Qp=⊕{ϕ:K→
Qp(ϕ),
Qp)).
AchoiceofliftoftheHodgefiltrationprovidesuswithCMtypeΦ.LetK∗bethereflexfielddefinedbyΦ.Weseethat,infact,aliftoftheHodgefiltrationisdefinedoverΛ,whereΛisthecompositumofWwiththevaluationringofthep-adicreflexfieldassociatedtoΦ.
4.4.3.LetV=OK⊗ZC-acomplexvectorspaceonwhichOKacts.ChooseaZ-basise1,...,e2gforOKandconsiderfΦ(x
OK∗
→Sets
CLASSINVARIANTS9
whereA/SisanabelianschemewithCManddet(eixi,Lie).Thatis,thetriple(A/S,λ,ι:OK֒→EndS(A))satisfiestheKottwitzcondition[Kot,§5]uniquelydeterminedbyΦ.
Forthegivenpointx=(A,λ,ι)∈M(
FptothecategorySets
Fp
)→H1dR(A/
Lemma4.4.1,wemaylift(A/Fp,λ0,ι0)definedoversomep-adicfieldK1
andso,byLefschetzprinciple,definedoverC.Bythetheoryofcomplexmultiplication(A0,λ0,ι0)isdefinedoversomenumberfieldK2.SincetheCMfieldKisprimitive,A0issimpleandprinci-pallypolarized.ByatheoremofWeil[Wei]thepolarizationisdefinedbyanonsingularprojectivegenus2curveCanditfollowsthatA0∼=Jac(C)aspolarizedabelianvarieties.Furthermore,CisdefinedoveranumberfieldK3(thatisatmostaquadraticextensionofK2).BypassingtoafiniteextensionLofK3,wegetastablemodel.
5.Applications
5.1.Ageneralprinciple.Thefollowinglemmaisfolkloreandeasytoprove:
Lemma5.1.1.Letπ:S→RbeaproperschemeoveraDedekinddomainRwithquotientfieldH.LetL→SbealinebundleonSandf,g:S→Lsections.Letx∈S(H′)beapoint,whereH′isafinitefieldextensionofH.Letu=(f/g)(x)∈H′.LetpbeaprimeofR′,theintegralclosureofRinH′.Letx¯betheR′-pointcorrespondingtox.Thenvalp(u)<0impliesthatx¯intersectsthedivisorofginthefiberofSoverp.Corollary5.1.2.LetA2→Spec(Z)bethemodulispaceofprincipallypolarizedabeliansurfacesandlet(5.1)
Θ(τ)=
1
Fp,λ,ι)=(E1×E2/
Fp(E1
×E2)).By
10EYALZ.GOREN&KRISTINE.LAUTER
theringofintegersofanumberfieldL,andthattheweightoffisoftheform10k,kapositiveinteger.
LetτbeapointonSp4(Z)\\H2correspondingtoasmoothgenus2curveCwithCMbythefullringofintegersofaprimitiveCMfieldK.Then(f/Θk)(τ)isanalgebraicnumberlyinginthecompositumHK∗LoftheHilbertclassfieldofK∗andL.Ifaprimepdividesthedenominatorof(f/Θk)(τ)thenChasbadreductionmodulop.
Proof.Theargumentisessentiallythatof[DSG,§4.4]:Igusa[Igu2]provedthatΘisamodularformonSp4(Z)\\H2(see[Igu2,Thm.3],Θisdenotedthereχ10).Itiswellknowntohaveweight10andacomputationshowsthatitsFouriercoefficientsareintegersandhaveg.c.d.1.Theq-expansionprinciple[FC,Ch.V,Prop.1.8]showsthatfandΘkaresectionsofasuitablelinebundleofthemodulischemeA2⊗ZOL.Thevalue(f/Θk)(τ)liesinHK∗Lbythetheoryofcomplexmultiplication.
ItisclassicalthatthedivisorofΘoverC,sayDgen,isthelocusofthereduciblepolarizedabeliansurfaces–thosethatareaproductofellipticcurveswiththeproductpolarization.The
clofDZariskiclosureDgengeninA2iscontainedinthedivisorDarithofΘ,viewedasasectionofa
cl=DlinebundleoverA2,andthereforeDgenarith,becausebytheq-expansionprincipleDarithhasclalsoparameterizesreduciblepolarizedabeliansurfaces,itno“verticalcomponents”.SinceDgen
followsthatDarithparameterizesreduciblepolarizedabeliansurfaces.(Furthermore,itiseasytoseebyliftingthateveryreduciblepolarizedabeliansurfaceisparameterizedbyDarith.)TheCorollarythusfollowsfromLemma5.1.1.Corollary5.1.3.(f/Θk)(τ)isanS-integer,whereSisthesetofprimesoflyingoverrationalprimesplessthan16·d2(Tr(r))2andsuchthatpdecomposesinacertainfashioninanormalclosureofKasimposedbysuperspecialreduction[Gor,Thms.1,2](forexample,ifKisacyclicGaloisextensionthenpiseitherramifiedordecomposesasp1p2inK).
5.2.Classinvariants.Igusa[Igu,p.620]definedinvariantsA(u),B(u),C(u),D(u)ofasexticu0X6+u1X5+···+u6,withrootsα1,...,α6,ascertainsymmetricfunctionsoftheroots.
210Forexample,D(u)=u0i i1=A5/D, i2=A3B/D, i3=A2C/D. Oneshouldnotethoughthattheseinvariantsarenotknowna-prioritobevalidincharacteristic2,sinceWeierstrasspoints“donotreducewell”modulo2.TheinvariantsincanbeexpressedintermsofSiegelmodularformsthus: 65 i1=2·35χ−10χ12, See[Igu1,pp.189,195]forthedefinitions;ψiareEisensteinseriesofweighti,−22χ10isourΘ.Anotherinterestingapproachtothedefinitionofinvariantsisthefollowing:LetI2=h12/h10,I4=h4,I6=h16/h10,I10=h10bethemodularformsofweight2,4,6,10,respectively,asin[Lau].TheappealofthisconstructionisthateachhnisasimplepolynomialexpressioninRie-ǫ mannthetafunctionswithintegralevencharacteristics[ǫ′];forexample,h4=10(Θ[ǫǫ′](0,τ))4, 43 i2=2−3·33ψ4χ−10χ12,32−432 i3=2−5·3ψ6χ−10χ12+2·3ψ4χ10χ12. CLASSINVARIANTS11 h10=212Θ.Itisnothardtoprovethattheg.c.d.oftheFouriercoefficientsofΘ[ǫǫ′](0,τ),for[ǫǫ′]anintegralevencharacteristic,is1ifǫ∈Z2(thathappensfor4evencharacteristics)and2ifǫ∈Z2(thathappensfor6evencharacteristics).UsingthatandwritingIn=∗/Θ,onefindsthatthenumeratorofInhasanintegralFourierexpansion.Onethenlets 5−12 j1:=I2/2I10, 3 j2:=I2I4/2−12I10, 2 j3:=I2I6/2−12I10. Thesearemodularfunctionsoftheformf/Θk,suchthatthenumeratorhasintegralFourier coefficients.Slightlymodifyingthedefinitionof[Lau](thereoneusesji:=2−12ji),weput (5.2)Hi(X)=(X−ji(τ)),i=1,2,3, τ wheretheproductistakenoverallτ∈Sp(4,Z)\\H2suchthattheassociatedabelianvarietyhasCMbyOK(thusallpolarizationsandCMtypesappear).Weremarkthatj1=i1,j2=i2;thiscanbeverifiedusingtheformulasgivenin[Igu3,p.848]. ThepolynomialsappearinginEquation(5.2)haverationalcoefficientsthataresymmetricfunctionsinmodularinvariants,viz.thevaluesofthefunctionsjiassociatedtoCMpoints.Assuch,itisnaturaltoaskfortheprimefactorizationofthesecoefficients.Forexample,theresultsof[GZ]givethefactorizationofthediscriminantoftheHilbertclasspolynomialinthecaseofimaginaryquadraticfieldsandsoprovideaboundontheprimeswhichcanappear.In[Lau],itwasconjecturedthatprimesdividingthedenominatorsofthecoefficientsofHi(X)areboundedbythediscriminantofK(notethattheonlydifferencebetweenthecurrentdefinitionandloc.cit.ispowersof2).Wededucefromtheprecedingresultsthefollowing: Corollary5.2.1.ThecoefficientsoftherationalpolynomialsHi(X)areS-integerswhereSisthesetofprimessmallerthan16·d2(Tr(r))2andsatisfyingacertaindecompositionpropertyinanormalclosureofKasimposedbysuperspecialreduction.Weprovidesomenumericaldatain§§6.1-6.2. Remark5.2.2.Theorem4.2.1givesapartialconversetothiscorollary. 5.3.Units.LetKbeaprimitivequarticCMfieldasbefore.In[DSG],DeShalitandthefirstnamedauthorconstructedclassinvariantsu(Φ;a),u(Φ;a,b)associatedtocertainidealsofKandaCMtypeΦ.TheconstructionessentiallyinvolvestheevaluationofΘatvariousCMpointsassociatedtoK.Thoughtheconstructionisgeneral,werecallitonlyfortheu(Φ;a)andunderveryspecialconditions.Forthegeneralcase,refertoloc.cit. Example5.3.1.AssumethatKisacyclicCMfieldwithoddclassnumberhK,hK+=1.LetΦbeaCMtypeofKandassumethatthedifferentidealDK/Q=(δ)witha=(a).Theformf,g=TrK/Q( ∆(Φ(OK)) ,u(Φ;a,b)= u(Φ;ab) 12EYALZ.GOREN&KRISTINE.LAUTER Corollary5.3.2.Theinvariantsu(Φ;a,b)areS-unitsforSthesetofprimesofHK∗thatlieoverrationalprimespsmallerthan16·d2(Tr(r))2suchthatpdecomposesinacertainfashioninanormalclosureofKasimposedbysuperspecialreduction. 6.Appendix:Numericaldata 6.1.Classinvariants.LetK=Q[x]/(x4+50x2+93)bethenon-normalquarticCMfield √ ofclassnumber4generatedbyi133overitstotallyrealsubfieldK0=Q( √ 13−3 37·2312·13112 ,i2= 2·5·113·533·67193·7229·301133 y2=−70399443x6+36128207x5+262678342x4−48855486x3−112312588x2+36312676x.Thereductionofagenus2curveataprimecanbecalculatedusing[Liu,Thm1,p.204].Fortheseexamplesweactuallycalculatedthereductionusingthegenus2reductionprogramwrittenbyLiu.Theoutputoftheprogramshowsthatattheprimesp=2,3,23,131,thecurve 34·238·1318 ,hasanaffinemodel CLASSINVARIANTS13 haspotentialstablereductionequaltotheunionoftwosupersingularellipticcurvesE1andE2intersectingtransversallyatonepoint. 1055 Thesecondcurvehasinvariantsequaltoi1=2·7·11·21059,i3=33·238 2·76·112·210592·71347·739363 Fp.Becauseofrunningtimeandmemoryrestrictionswedidonlysamplecalculations.Forp=10007,theTotalComputationTimewas22688.710seconds,TotalMemoryUsagewas1213.97MB.TheprogramranonanIntelPentium4,2.53GHz,1GBmemory. p101 18 307 34 503 50 701 68 907 84 2003 250 4001 418 6007 584 8009 750 10007 10089 59 0.700 78 56 0.674 63 46 0.654 45 34 0.698 30 20 0.667 26 18 0.633 22 14 0.654 18 12 0.682 √[10 N 0.6009 0.611 p 14EYALZ.GOREN&KRISTINE.LAUTER Acknowledgments:WewouldliketothankPaymanKassaeiforvaluablediscussionsandEhudDeShalitforsomeusefulcomments.Thefirstnamedauthor’sresearchwaspartiallysupportedbyNSERC;hewouldliketothankMicrosoftResearchforitshospitalityduringavisitwherethisprojecttookshape.ThesecondnamedauthorthanksTonghaiYangformanystimulatingdiscussionsandMcGillUniversityforitshospitality. References [DSG]DeShalit,E.;Goren,E.Z.:Onspecialvaluesofthetafunctionsofgenustwo.Ann.Inst.Fourier(Grenoble) 47(1997),no.3,775–799. [DP]Deligne,P.;Pappas,G.:Singularit´esdesespacesdemodulesdeHilbert,enlescaract´eristiquesdivisantle discriminant.CompositioMath.90(1994),no.1,59–79. [Dok]Dokchitser,T.:Deformationsofp-divisiblegroupsandp-descentonellipticcurves.Ph.D.thesis,Utrecht 2000. [Dor]Dorman,D.R.:Singularmoduli,modularpolynomials,andtheindexoftheclosureofZ[j(τ)]inQ(j(τ)). Math.Ann.283(1989),no.2,177–191. [FC]Faltings,G.;Chai,C.-L.:Degenerationofabelianvarieties.WithanappendixbyDavidMumford.Ergebnisse derMathematikundihrerGrenzgebiete(3)22.Springer-Verlag,Berlin,1990. [Gor]Goren,E.Z.:Oncertainreductionproblemsconcerningabeliansurfaces.ManuscriptaMath.94(1997), no.1,33–43. [GZ]Gross,B.H.;Zagier,D.B.:Onsingularmoduli.J.ReineAngew.Math.355(1985),191–220.[Igu]Igusa,J.-I.:ArithmeticVarietyofModuliforGenusTwo.Ann.Math.72,(1960),612–649.[Igu1]Igusa,J.-I.:OnSiegelmodularformsofgenustwo.I.Amer.J.Math.84(1962),175–200.[Igu2]Igusa,J.-I.:OnSiegelmodularformsofgenustwo.II.Amer.J.Math.86(1964),392–412.[Igu3]Igusa,J.-I.:Modularformsandprojectiveinvariants.Amer.J.Math.89(1967),817–855. [IKO]Ibukiyama,T.;Katsura,T.;Oort,F.:Supersingularcurvesofgenustwoandclassnumbers.Compositio Math.57(1986),no.2,127–152. [Kot]Kottwitz,R.E.:PointsonsomeShimuravarietiesoverfinitefields.J.Amer.Math.Soc.5(1992),no.2, 373–444. [Lau]Lauter,K.E.:PrimesinthedenominatorsofIgusaclasspolynomials.Pre-print,arXiv:math.NT/0301240, 2003. [Liu]Liu,Q.:Courbesstablesdegenre2etleurschmademodules.Math.Ann.295(1993),no.2,201–222. [Oor]Oort,F.:Finitegroupschemes,localmoduliforabelianvarieties,andliftingproblems.CompositioMath. 23(1971),265–296. [Piz]Pizer,A.:AnalgorithmforcomputingmodularformsonΓ0(N).J.Algebra64(1980),no.2,340–390. [Rap]Rapoport,M.:Compactificationsdel’espacedemodulesdeHilbert-Blumenthal.CompositioMath.36 (1978),no.3,255–335. [Sie]Siegel,C.L.:Lecturesonthegeometryofnumbers.Springer-Verlag,Berlin,1989.[Vig]Vign´eras,M.-F.:Arithm´etiquedesalg`ebresdequaternions.LectureNotesinMathematics,800.Springer, Berlin,1980. [Wam]vanWamelen,P.:ExamplesofgenustwoCMcurvesdefinedovertherationals.Math.Comp.68(1999), no.225,307–320. [Wei]Weil,A.:ZumBeweisdesTorellischenSatzes.Nachr.Akad.Wiss.Gttingen.Math.-Phys.Kl.IIa.1957 (1957),33–53.DepartmentofMathematicsandStatistics,McGillUniversity,805SherbrookeSt.W.,MontrealH3A2K6,QC,Canada. MicrosoftResearch,OneMicrosoftWay,Redmond,WA98052,USA.E-mailaddress:goren@math.mcgill.ca;klauter@microsoft.com 因篇幅问题不能全部显示,请点此查看更多更全内容