搜索
您的当前位置:首页正文

在keras里面实现计算f1-score的代码

来源:易榕旅网
在keras⾥⾯实现计算f1-score的代码

我就废话不多说了,⼤家还是直接看代码吧!

### 以下链接⾥⾯的codeimport numpy as np

from keras.callbacks import Callback

from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_scoreclass Metrics(Callback):

def on_train_begin(self, logs={}): self.val_f1s = [] self.val_recalls = [] self.val_precisions = []

def on_epoch_end(self, epoch, logs={}):

val_predict = (np.asarray(self.model.predict(self.model.validation_data[0]))).round() val_targ = self.model.validation_data[1] _val_f1 = f1_score(val_targ, val_predict)

_val_recall = recall_score(val_targ, val_predict)

_val_precision = precision_score(val_targ, val_predict) self.val_f1s.append(_val_f1)

self.val_recalls.append(_val_recall)

self.val_precisions.append(_val_precision)

print “ — val_f1: %f — val_precision: %f — val_recall %f” %(_val_f1, _val_precision, _val_recall) return

metrics = Metrics()model.fit(

train_instances.x, train_instances.y, batch_size, epochs, verbose=2,

callbacks=[metrics],

validation_data=(valid_instances.x, valid_instances.y),)

补充知识:Keras可使⽤的评价函数

1:binary_accuracy(对⼆分类问题,计算在所有预测值上的平均正确率)

binary_accuracy(y_true, y_pred)

2:categorical_accuracy(对多分类问题,计算在所有预测值上的平均正确率)

categorical_accuracy(y_true, y_pred)

3:sparse_categorical_accuracy(与categorical_accuracy相同,在对稀疏的⽬标值预测时有⽤ )

sparse_categorical_accuracy(y_true, y_pred)

4:top_k_categorical_accuracy(计算top-k正确率,当预测值的前k个值中存在⽬标类别即认为预测正确 )

top_k_categorical_accuracy(y_true, y_pred, k=5)

5:sparse_top_k_categorical_accuracy(与top_k_categorical_accracy作⽤相同,但适⽤于稀疏情况)

sparse_top_k_categorical_accuracy(y_true, y_pred, k=5)

以上这篇在keras⾥⾯实现计算f1-score的代码就是⼩编分享给⼤家的全部内容了,希望能给⼤家⼀个参考,也希望⼤家多多⽀持。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top