今年山东改用全国卷,较之前更倾向于考察分析解决问题的能力,方向性更加灵活,而电磁感应历来是高考的重点内容,其考察综合性强,涉猎范围广,很好的迎合了全国卷的“胃口”。(特别是全国卷大题好几年没考了奥,你懂得)因此,童鞋们要善于总结这部分题的解题方法和思路,跟老师一起来学习吧~ 我们把所学知识当做武器,把问题当做敌人,苦练杀敌本领,用武器消灭敌人。
1关于电磁感应的图像问题:常见的有 Φ-t图像 、B-t图像、I-t图像、E-t图像。这里说前两种,出现这两种图像,就是间接地告诉了你感应电动势的大小。由法拉第电磁感应定律可知E=nΔΦ/Δt,如果是Φ-t图像,则图像的斜率即为ΔΦ/Δt的大小。更常见的是B-t图像,法拉第电磁感应定律变形一下即为E=nSΔB/Δt,所以图像的斜率即为ΔB/Δt,所以立马可以算出E的大小。(多总结,做题又快又准)
2
光说不练假把式:在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求: (1)求螺线管中产生的感应电动势?
(2)闭合S,电路中的电流稳定后,求此时全电路电流的方向(顺时针还是逆时针)? (3)闭合S,电路中的电流稳定后,电阻R1的电功率? (4)闭合S,电路中的电流稳定后,求电容器的电量?
2 电磁感应中的电学问题
碰到这样的问题,小朋友们应该是很幸运了(前提是电流学的还可以),这类问题,不外乎导体切割磁感线产生感应电动势充当电源(动生电动势)或者是磁通量发生变化的回路产生感应电动势(感生电动势)。涉及到的问题不外乎求电路中的电流、电压,判断电流方向、电容器电量的计算、再加上安培力(这个要专题练习)
例题1 如图所示,边长为L、不可形变的正方形导线框内有半径为r的圆形磁场区域,其磁感应强度B随时间t的变化关系为B=kt(常量k>0).回路中滑动变阻器R的最大阻值为R0,滑动片P位于滑动变阻器中央,定值电阻R1=R0、R2= R0/2,闭合开关S,电压表的示数为U,不考虑虚线MN右侧导体的感应电动势,则( )
A.R2两端的电压为U/7 B.电容器的a极板带正电
C.滑动变阻器R的热功率为电阻R2的5倍 D.正方形导线框中的感应电动势为KL
2
例题2 如图所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直于纸面向里的匀强磁场中,磁感应强度为B.电容器的电容为C,除电阻R外,导轨和导线的电阻均不计.现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时( )
A.电容器两端的电压为零 B.电阻两端的电压为BLv
C.电容器所带电荷量为CBLv D.为保持MN匀速运动,需对其施加的拉力大小为BL/R 3 电磁感应中的力学问题
前面在磁场中我们经常做这类题目,不多说,只说一下解题思路:用法拉第电磁感应定律或楞次定律求E得大小方向→求电流→分析受力→列平衡方程或用牛二列方程 4 电磁感应中的能量问题
从能量角度来说,电磁感应是不同形式的能转化成电能的过程。
导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是: ①用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向; ②画出等效电路,求出回路中电阻消耗电功率表达式;
③分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。
需要强调的是,安培力往往是一个变化的力,所以求安培力做的功时要从能量角度出发,切记不可用某个状态的安培力去求解安培力做的功。
例题 电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75 m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上。阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Qr=0.1J。(取g=10m/s)求: (1)金属棒在此过程中克服安培力的功
;
2
22V
(2)金属棒下滑速度v=2m/s时的加速度a。
(3)为求金属棒下滑的最大速度vm,有同学解答如下:由动能定理
果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。
,„„。由此所得结
因篇幅问题不能全部显示,请点此查看更多更全内容